首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode Caenorhabditis elegans reproduces primarily by self-fertilization of hermaphrodites, yet males are present at low frequencies in natural populations (androdioecy). The ancestral state of C. elegans was probably gonochorism (separate males and females), as in its relative C. remanei. Males may be maintained in C. elegans because outcrossed individuals escape inbreeding depression. The level of inbreeding depression is, however, expected to be low in such a highly selfing species, compared with an outcrosser like C. remanei. To investigate these issues, we measured life-history traits in the progeny of inbred versus outcrossed C. elegans and C. remanei individuals derived from recently isolated natural populations. In addition, we maintained inbred lines of C. remanei through 13 generations of full-sibling mating. Highly inbred C. remanei showed dramatic reductions in brood size and relative fitness compared to outcrossed individuals, with evidence of both direct genetic and maternal-effect inbreeding depression. This decline in fitness accumulated over time, causing extinction of nearly 90% of inbred lines, with no evidence of purging of deleterious mutations from the remaining lines. In contrast, pure strains of C. elegans performed better than crosses between strains, indicating outbreeding depression. The results are discussed in relation to the evolution of androdioecy and the effect of mating system on the level of inbreeding depression.  相似文献   

2.
Most studies on the fitness advantage of outbreeding in host–parasite systems have been assessed from the host rather than the parasite perspective. Here, we performed experimental pollination treatments to evaluate the consequences of outbreeding on fitness-related traits in the holoparasitic mistletoe Tristerix aphyllus in a 2-year field study. Results indicate that self-pollinated plants had a lower fruit production than outcrossed plants (20.4% and 29.5% reduction in 2002 and 2003, respectively), and resulting inbred fruits were smaller than outcrossed fruits in both years. No effect was detected for seed mass. The percentage of germination of inbred seeds was 15.1% and 6.0% lower than outcrossed seeds in 2002 and 2003, respectively. Inbred seedlings had shorter radicles, which translated to a 71.6% and 60.0% reduction in infection success compared with outcrossed plants in 2002 and 2003, respectively. Overall, our results revealed significant inbreeding depression on almost every trait that was examined. Although the mean value of traits varied from a year to another, the magnitude of inbreeding depression did not change significantly between years. Our findings constitute the first evidence that outcrossing increases infection success and probably virulence in parasitic plant populations.  相似文献   

3.
In many species, some individuals carry one or more B chromosomes: extra, or supernumerary chromosomes not part of the normal complement. In most well-studied cases, Bs lower the fitness of their carrier and persist in populations only because of accumulation mechanisms analogous to meiotic drive. It has been suggested that such genomic parasites are expected to persist only in outcrossed sexual species, in which uninfected lines of descent can be continuously reinfected; in inbred or asexual species, all selection is between lines of descent, and the genomic parasites are either lost or must evolve into commensals or mutualists. Here we present a simple population genetic model of the effect of outcrossing rate on the frequency of B chromosomes, and find that outcrossing facilitates the spread of parasitic Bs, but inhibits the spread of mutualists. Data compiled from the literature on breeding system and B chromosomes of British plants indicate that Bs are much more likely to be reported from obligately outcrossed species than inbred species. These results support the ideas that most B chromosomes are parasitic, and that breeding systems play a central role in the biology of selfish genes.  相似文献   

4.
The effect of inbreeding on genetic diversity is expected to decrease plant defences or vigour-related traits that, in turn, can modify the pattern of attack by herbivores. The selective damage caused by herbivores can produce variable fitness costs between inbred and outcrossed progenies influencing the evolution of a species’ plant mating system. By exposing inbred and outcrossed plants to natural conditions of seed predation, we assessed whether inbreeding increases weevil incidence and infestation, and how weevil seed predation affects the fitness of inbred and outcrossed progeny. To test if inbreeding affected the host’s plant quality, we weighed the biomass of weevils developed in inbred and outcrossed progenies. An additional experiment was carried out to examine whether weevils preferentially attack vigorous plants regardless from the level of inbreeding. The average value of leaf size was 21% larger in outcrossed plants than in inbred plants. Likewise, weevil incidence and infestation were 13 and 40%, respectively, higher on outcrossed plants relative to their inbred counterparts. However, the relative impact of seed predation was significantly lower in outcrossed progeny than in inbred progeny. In contrast, inbreeding did not alter host plant quality and weevils developed in inbred and outcrossed plants had a similar biomass. Variations in fruit number were consistently associated with the infestation level in both experiments, whereas leaf size only predicted the number of weevils in one experiment, suggesting that fruit number is the most influential vigour-related characteristic of a weevil attack. These findings indicate that the costs of inbreeding of the interaction D. stramonium-T. soror were higher for inbred plants than for outcrossed plants. The interaction between seed predation and inbreeding depression could prevent the fixation of selfing as a unique reproductive strategy in D. stramonium.  相似文献   

5.
K. Dong  C. H. Opperman 《Genetics》1997,146(4):1311-1318
A genetic analysis of parasitic ability in the soybean cyst nematode Heterodera glycines was performed. To identify and characterize genes involved in parasitism, we developed three highly inbred H. glycines lines, OP20, OP25 and OP50, for use as parents for controlled crosses. Through these crosses, we have identified genes in the inbred parents that control reproduction of the nematode on hosts that carry resistance genes. These genes, designated as ror-* for reproduction on a resistant host, segregate in a normal Mendelian fashion as independent loci. Host range tests of F(1) generation progeny indicated that at least one parasitism gene in both the OP20 and OP50 lines for host PI 88788 was dominant. Parasitism genes in OP50 for hosts ``Peking' and PI 90763 are recessive. Two types of single female descent populations, a single backcrossed BC(1)F(2)-derived and a double backcrossed BC(2)F(1)-derived, were established on the susceptible soybean cultivar ``Lee 68.' Host range tests for parasitism in these lines demonstrated the presence of two independent genes in OP50, one for host PI 88788 designated ror-1 and one for host PI 90763 designated ror-2. OP20 carries two independent genes for parasitism on PI 88788, designated as alleles kr3 and kr4.  相似文献   

6.
The hydrophilous seagrass Posidonia australis has a wide range of multilocus outcrossing rates (t), which vary from 0 to 0.89, with "apparent' outcrossing rates varying from 0 to 0.42 among the seven populations sampled. This pattern of outcrossing rate indicates that water pollination (hydrophily) is less uniform than wind pollination and more similar to animal pollination in its variability. Variation in levels of outcrossing between populations may be due to differences in water movement; for example, open bays have greater pollen dispersal and higher outcrossing rates. Considerable pollen movement within meadows was inferred from a high frequency of nonmaternal alleles in the pollen pool. The distribution of genetic diversity among populations (GST = 0.229) suggests moderate gene flow on the local scale. These results demonstrate that successful submarine cross-pollination occurs in the hydrophile P. australis, which has a diverse mating system with populations that range from predominantly inbred to predominantly outcrossed.  相似文献   

7.
Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae), unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s) a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing γ-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first reported case of a nuclear suppressor of male-killing in a ladybird. They are considered in regard to sex ratio and intra-genomic conflict theories, and models of the evolutionary dynamics and distribution of inherited symbionts.  相似文献   

8.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

9.
In gynodioecious plant populations, sex determination often involves both cytoplasmic male-sterility (CMS) genes and specific nuclear genes that restore male function. How gynodioecy is maintained under the joint dynamics of CMS and restorer genes remains controversial. Although many theoretical models deal with interactions between CMS genes and restorer genes with sexual phenotypes and predict changes in their frequencies, it is difficult to observe the frequencies because no molecular markers have been established for either CMS or restorer genes in well-studied gynodioecious plants. This is the first report of the frequency of a CMS gene determined using a molecular marker in natural populations of a gynodioecious plant. Using a set of CMS gene-specific polymerase chain reaction primers, we compared female and CMS gene frequencies in 18 natural populations of Raphanus sativus. Female frequency was relatively low, ranging from 0 to 0.21. In contrast, the CMS gene frequency was highly variable among populations, ranging from 0 to 1. Estimated restorer gene frequency seemed less variable than observed CMS gene frequency, probably due to higher gene flow than in the CMS gene. Genetic drift may play a role in maintaining high variability of the CMS gene, although other possibilities are not excluded.  相似文献   

10.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

11.
Four field populations of Heterodera glycines tested for ability to reproduce on three host differentials were each classified into one of the recognized races. A fifth population represented a new race. Genetic analysis indicated that the designated races are actually field populations that differ from each other primarily in the frequencies of three groups of genes (genes for parasitism) that act quantitatively and control the ability of the nematode to reproduce on resistant P.I. 88788, Pickett, and P.I. 90763 soybeans. Populations of race-3 have none of these genes for parasitism, or they have some in low frequency that results in an index of parasitism of less than 10 on any one of the resistant soybeans. Race-1 has a high frequency of one group of genes that enable it to reproduce on P.I. 88788. Race-2 has two groups of genes for parasitism in high frequency; one for P.I. 88788, and one for Pickett. Based on these findings, it was assumed that race-4 has three groups of genes for parasitism; one for P.I. 88788, one for Pickett, and one for P.I. 90763. Additional races may be recognized when new genes are identified, or when new gene combinations are discovered. The ability to reproduce on P. I. 88788 is inherited independently from the ability to reproduce on Pickett. Although the genetic structure of field populations does not provide a solid foundation for race designation, recognizing races under the present system may be useful when it clearly characterizes the behavior of field populations. Race designations, however, should be regarded as provisional since gene frequencies change with time in response to selection forces and, therefore, the race status of a population may change accordingly.  相似文献   

12.
Hu XS  Ennos RA 《Genetics》1999,152(1):441-450
The classical island and one-dimensional stepping-stone models of population genetic structure developed for animal populations are extended to hermaphrodite plant populations to study the behavior of biparentally inherited nuclear genes and organelle genes with paternal and maternal inheritance. By substituting appropriate values for effective population sizes and migration rates of the genes concerned into the classical models, expressions for genetic differentiation and correlation in gene frequency between populations can be derived. For both models, differentiation for maternally inherited genes at migration-drift equilibrium is greater than that for paternally inherited genes, which in turn is greater than that for biparentally inherited nuclear genes. In the stepping-stone model, the change of genetic correlation with distance is influenced by the mode of inheritance of the gene and the relative values of long- and short-distance migration by seed and pollen. In situations where it is possible to measure simultaneously Fst for genes with all three types of inheritance, estimates of the relative rates of pollen to seed flow can be made for both the short- and long-distance components of migration in the stepping-stone model.  相似文献   

13.
Recently diverged populations often exhibit incomplete reproductive isolation, with a low level of gene flow continuing between populations. Previous studies have shown that, even under a low level of gene flow, genetic divergence between populations can proceed at the loci governing local adaptation and reproductive isolation but not at other neutral loci. A leaf‐mining moth, Acrocercops transecta, consists of Juglans‐ and Lyonia‐associated host races. The two host races differ in host preferences of ovipositing females and in larval adaptation to host plants but mate readily in the laboratory, producing fertile hybrids. The Juglans and Lyonia races are often sympatric in the wild, implying that gene introgression could occur in nature between the two host races. We tested this hypothesis by combining phylogenetic analyses with coalescent simulations, focusing on mitochondrial genes (COI and ND5) and the nuclear Tpi, Per and Ldh genes located on the Z‐chromosome. The mitochondrial genes clearly distinguished the Lyonia race from the Juglnas race, whereas the Tpi, Per and Ldh genealogies did not reflect the two host races. Coalescent simulations indicated gene flow at the three Z‐linked genes in both directions, whereas there was no introgression in the mitochondrial genes. The lack of introgression in mitochondrial genes suggests that female host preference is the primary force leading to the bifurcation of maternally inherited loci. Thus, the results show that a low level of gene flow coupled with the inflexible female host preference differentiates histories of divergence between maternally and biparentally inherited genes in this host race system.  相似文献   

14.
M Ferriol  C Pichot  F Lefèvre 《Heredity》2011,106(1):146-157
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load.  相似文献   

15.
In wild house mice, genes linked to the t transmission distortion complex cause meiotic drive by sabotaging wild-type gametes. The t complex is consequently inherited at frequencies higher than 90%. Yet, for unclear reasons, in wild mouse populations this selfish DNA is found at frequencies much lower than expected. Here, we examine selection on the t complex in 10 seminatural populations of wild mice based on data from 234 founders and nearly 2000 progeny. Eight of the 10 populations decreased in t frequency over one generation, and the overall frequency of t haplotypes across all 10 populations was 48.5% below expectations based on transmission distortion and 34.3% below Mendelian (or Hardy-Weinberg) expectations. Behavioral and reproductive data were collected for 10 months for each population, and microsatellite genotyping was performed on seven of the populations to determine parentage. These combined data show t-associated fitness declines in both males and females. This is the first study to show evidence for a reduction in the ability of +/t males to maintain territories. Because females tend to mate with dominant males, impairment of territorial success can explain much of the selection against t observed in our populations. In nature, selection against heterozygote carriers of the t complex helps solve the puzzlingly low t frequencies found in wild populations. This ecological approach for determining fitness consequences of genetic variants has broad application for the discovery of gene function in general.  相似文献   

16.
Gene flow by pollen dispersal from forestry plantations containing introduced species, provenances or selected elite breeding material may impact on local native forest by changing the genetic diversity, introducing new genes or gene combinations, or causing the extinction of rare genotypes in adjacent native forest areas. Patterns of pollen flow can be used to assess the risk of genetic pollution of native forest areas from nearby plantations. Pollen flow in an artificial population of Eucalyptus grandis was estimated using molecular markers and paternity analysis. Microsatellite genotyping was used to identify pollen parents of progeny arrays from six mother trees. Of 329 progeny analysed, 178 (54%) were assigned to pollen parents within the population. Pollen parents located within the population were between 0–192 m from the respective mother trees, with an average pollination distance of 57.96 m. Pollination of mother trees was outcrossed, not by nearest neighbours, and displayed a preference for inter-provenance matings within the population. Progeny that could not be assigned pollen parents within the population (46%) were assumed to have resulted from pollen immigration from external sources. These pollen flow parameters provide useful information about the dynamics of pollen movement within E. grandis populations and may be used in risk assessment of gene flow from plantations to adjacent areas of native forest.  相似文献   

17.
The genetic basis of post-zygotic reproductive isolation is beginning to be untangled in closely related species, but less is known about the genetics of reproductive isolation between divergent populations. Here, two genes encoding malic enzyme (ME) are isolated from the copepod Tigriopus californicus and their influence upon lowered viability in F(2) hybrids of genetically divergent populations is determined. Each ME gene has diverged extensively between T. californicus populations and one gene shows evidence for a recent selective sweep. Segregation patterns of genotypes for both ME genes in adult F(2) hybrids reveal dramatic departures from Mendelian inheritance, deviations that are not seen in F(2) nauplii implying that selection is acting during development based upon the genotype at these ME genes. These results imply that selection against deleterious gene combinations and not aberrant segregation (i.e. meiotic drive) is likely to lead to dramatic departures from Mendelian inheritance observed in these crosses.  相似文献   

18.
Many plants display limited seed dispersal, thereby creating an opportunity for sibling competition, i.e. fitness-determined interactions between related individuals. Here I investigated the consequences of intra-specific competition, by varying density and genetic composition of neighbors, on the performance of seedlings derived by selfing or outcrossing of the partially self-fertilizing plant Plantago coronopus (L.). Seedlings from eight plants, randomly selected from an area of about 50 m2 in a natural population, were used in (i) a density series with either one, four or eight siblings of each cross type per pot and (ii) a replacement series with eight plants per pot where selfed and outcrossed siblings were grown intermixed in varying frequencies. Density had a pronounced effect on plant performance. But, except for singly grown individuals, no differences were detected between selfed and outcrossed progenies in vegetative and reproductive biomass. When grown intermixed, selfed offspring were always inferior to their outcrossed relatives. The magnitude of reduction in performance was dependent on the number of outcrossed relatives a selfed seedling had to compete with, giving rise to a frequency-dependent fitness advantage to outcrossed seedlings. The major result of this study is (i) that the relative fitness of inbred progeny is strongly affected by the type of competitors (inbred or outbred) and (ii) that inbreeding depression varies according to the density and frequency of outbred plants and could be considered as a density- and frequency-dependent phenomenon. It is argued that sibling competition, due to the small genetic neighborhood of P. coronopus, might be an important selective force in natural populations of this species.  相似文献   

19.
Cranial base growth plates are important centers of longitudinal growth in the skull and are responsible for the proper anterior placement of the face and the stimulation of normal cranial vault development. We report that the presphenoidal synchondrosis (PSS), a midline growth plate of the cranial base, closes in the DBA/2J mouse strain but not in other common inbred strains. We investigated the genetics of PSS closure in DBA/2J mice by evaluating F1, F1 backcross, and/or F1 intercross offspring from matings with C57BL/6J and DBA/1J mice, whose PSS remain open. We observed that PSS closure is genetically determined, but not inherited as a simple Mendelian trait. Employing a genome-wide SNP array, we identified a region on chromosome 11 in the C57BL/6J strain that affected the frequency of PSS closure in F1 backcross and F1 intercross offspring. The equivalent region in the DBA/1J strain did not affect PSS closure in F1 intercross offspring. We conclude that PSS closure in the DBA/2J strain is complex and modified by different loci when outcrossed with C57BL/6J and DBA/1J mice.  相似文献   

20.
Generalist parasites regularly evolve host-specific races that each specialize on one particular host species. Many host-specific races originate from geographically structured populations where local adaptations to different host species drive the differentiation of distinct races. However, in sympatric populations where several host races coexist, gene flow could potentially disrupt such host-specific adaptations. Here, we analyse genetic differentiation among three sympatrically breeding host races of the brood-parasitic common cuckoo, Cuculus canorus. In this species, host-specific adaptations are assumed to be controlled by females only, possibly via the female-specific W-chromosome, thereby avoiding that gene flow via males disrupts local adaptations. Although males were more likely to have offspring in two different host species (43% versus 7%), they did not have significantly more descendants being raised outside their putative foster species than females (9% versus 2%). We found significant genetic differentiation for both biparentally inherited microsatellite DNA markers and maternally inherited mitochondrial DNA markers. To our knowledge, this is the first study that finds significant genetic differentiation in biparentally inherited markers among cuckoo host-specific races. Our results imply that males also may contribute to the evolution and maintenance of the different races, and hence that the genes responsible for egg phenotype may be found on autosomal chromosomes rather than the female-specific W-chromosome as previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号