首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate, extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required for viable management of such species in the Florida scrub ecosystem.  相似文献   

3.
Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests.  相似文献   

4.
Management or conservation targets based on demographic rates should be evaluated within the context of expected population dynamics of the species of interest. Wild populations can experience stable, cyclical, or complex dynamics, therefore undisturbed populations can provide background needed to evaluate programmatic success. Many raptor species have recovered from large declines caused by environmental contaminants, making them strong candidates for ongoing efforts to understand population dynamics and ecosystem processes in response to human‐caused stressors. Dynamic multistate occupancy models are a useful tool for analyzing species dynamics because they leverage the autocorrelation inherent in long‐term monitoring datasets to obtain useful information about the dynamic properties of population or reproductive states. We analyzed a 23‐year bald eagle monitoring dataset in a dynamic multistate occupancy modeling framework to assess long‐term nest occupancy and reproduction in Lake Clark National Park and Preserve, Alaska. We also used a hierarchical generalized linear model to understand changes in nest productivity in relation to environmental factors. Nests were most likely to remain in the same nesting state between years. Most notably, successful nests were likely to remain in use (either occupied or successful) and had a very low probability of transitioning to an unoccupied state in the following year. There was no apparent trend in the proportion of nests used by eagles through time, and the probability that nests transitioned into or out of the successful state was not influenced by temperature or salmon availability. Productivity was constant over the course of the study, although warm April minimum temperatures were associated with increased chick production. Overall our results demonstrate the expected nesting dynamics of a healthy bald eagle population that is largely free of human disturbance and can be used as a baseline for the expected dynamics for recovering bald eagle populations in the contiguous 48 states.  相似文献   

5.
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non‐linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11‐year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance‐tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.  相似文献   

6.
Understanding how organisms use disturbed habitats and how that use can be increased is a pivotal question in conservation biology. We analyzed the relationship between upper canopy cover, a measure of disturbance, and habitat occupancy and use by 18 forest bird species in northwest Ecuador. From May 22 to June 28, 2006 we conducted five, 10-min 50 m-radius point counts at each of the 28 sites (140 total) representing a gradient of habitat disturbance from 1,285 to 1,787 m in elevation. Both habitat occupancy and use showed strong threshold responses at 21–40% upper canopy cover with the probability of occupancy increasing from about 0 to 1 and emigration (the probability that a species would stop using the site during the study period) decreasing from about 1 to 0. Bird surveys ended near the beginning of the driest time of year and high levels of emigration in more disturbed areas imply that forest birds stopped using these areas as the dry season approached, possibly due to a shift in food resources. Patterns of habitat use and occupancy suggest that disturbed habitat in the region (which is primarily abandoned pasture) may only be valuable to forest birds after a specific level of regeneration and during certain times of the year.  相似文献   

7.
Intraguild interactions have important implications for carnivore demography and conservation. Differences in how predators respond to different forms of disturbance might alter their interaction patterns. We sought to understand how human and livestock disturbance impact co-occurrence of sympatric large carnivores such as tiger (Panthera tigris) and leopard (P. pardus) and thereby mediate the intraguild interaction pattern to enable coexistence of the species in a human-dominated landscape. We surveyed 361 locations in Chitwan National Park, Nepal, to examine how prey abundance and disturbance factors such as human and livestock presence might influence habitat use by tigers and leopards independently and when co-occurring. Single-species single-season models and two-species single-season models were developed to examine hypotheses on unconditional detection and occupancy and species interaction respectively. Pervasive human use of the park had negative impacts on tiger occupancy while the abundance of prey had a positive influence. Despite significant prey overlap between tigers and leopards, none of the native prey species predicted leopard habitat occupancy. However, habitats used extensively by livestock were also used by leopards. Further, we found strong evidence of intraguild competition. For instance tiger occupancy was higher in prey-rich areas and leopard occupancy was low in the sites where tigers were present. These findings, and a species interaction factor of < 1 clearly indicate that leopards avoid tigers, but their use of areas of disturbance enables them to persist in fringe habitats. We provide empirical evidence of how intraguild interaction may result in habitat segregation between competing carnivores, while also showing that human and livestock use of the landscape create disturbance patterns that facilitate co-occurrence of the predators. Thus, because large carnivores compete, some disturbance may mediate coexistence in small protected areas. Understanding such interactions can help address important conservation challenges associated with maintaining diverse carnivore communities in small or disturbed landscapes.  相似文献   

8.
2014年4-9月,通过铗夜法对12种不同生境内的四川短尾鼩种群数量进行了调查,依据捕获率的大小及生境的干扰程度分析四川短尾鼩的生境选择倾向。利用人工捕捉模拟种群干扰,分别在干扰1个月、2个月、3个月、4个月时间之后,监测荒草地、废弃梨树林、灌丛和绿化林4种代表性生境内四川短尾鼩的种群数量、年龄结构、性比的变化,进而分析四川短尾鼩对人为干扰的生态响应。结果显示:(1)四川短尾鼩在12种典型生境中,按捕获率的大小依次分为4个等级:绿化林>废弃梨树林、景观林、荒草地、桉树林、蔬菜地、灌丛>人居村落、废弃葡萄园>竹林,葡萄园,油菜地;(2)四川短尾鼩的生境选择倾向为:异质性适中、适度干扰、竞争较低的生境>异质性较低、干扰较高的生境(宜觅食、竞争弱)或异质性较高、干扰较低的生境(宜栖身、竞争弱)>高竞争的生境>异质性低或强烈干扰或二者兼有的生境。(3)干扰之初,所有生境中四川短尾鼩种群密度明显降低,干扰2个月之后其种群数量均可恢复到正常状态;干扰后性比平均值增加3.52%,怀孕率变化不显著;全部生境中,成体组比例平均降低1.71%,老年组减少7.53%;幼年组的比例平均增长2.33%,亚成体增加6.91%。幼体和亚成体比例的增加,使种群数量在一定时间内保持稳定增长。  相似文献   

9.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

10.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

11.
Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human‐altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human‐altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS‐ or radio‐tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical–geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation‐by‐resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human‐altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns.  相似文献   

12.
Species distribution models are the tool of choice for large-scale population monitoring, environmental association studies and predictions of range shifts under future environmental conditions. Available data and familiarity of the tools rather than the underlying population dynamics often dictate the choice of specific method – especially for the case of presence–absence data. Yet, for predictive purposes, the relationship between occupancy and abundance embodied in the models should reflect the actual population dynamics of the modelled species. To understand the relationship of occupancy and abundance in a heterogeneous landscape at the scale of local populations, we built a spatio-temporal regression model of populations of the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data comprised nineteen years of habitat surveys and snapshot data of land use in the region. We used variance partitioning to quantify relative contributions of land use, habitat quality and metapopulation covariates. The model revealed a consistent and positive, but noisy relationship between average occupancy and mean abundance in local populations. Patterns of abundance were highly variable across years, with large uncorrelated random variation and strong local population stochasticity. In contrast, the spatio-temporal random effect, habitat quality, population connectivity and patch size explained variation in occupancy, vindicating metapopulation theory as the basis for modelling occupancy patterns in fragmented landscapes. Previous abundance was an important predictor in the occupancy model, which points to a spillover of abundance into occupancy dynamics. While occupancy models can successfully model large-scale population structure and average occupancy, extinction probability estimates for local populations derived from occupancy-only models are overconfident, as extinction risk is dependent on actual, not average, abundance.  相似文献   

13.
For seasonal migrants, non‐breeding regions can play different roles in the ecology of their annual cycles: as stopover habitat, overwintering habitat, or as a combination in which some individuals stop‐over and others over‐winter. Such functional variations can lead to variation in occupancy dynamics and migration phenology to these different regions. In this study, we used data from archived Doppler weather surveillance radar to compare site‐occupancy and movement dynamics of a migratory songbird (tree swallow Tachycineta bicolor) between two non‐breeding areas: southeastern Louisiana and central peninsular Florida, USA. Specifically, in each area, we 1) quantified long‐term (1996–2012) non‐breeding season occupancy dynamics, 2) quantified variation in timing of autumn migration, and 3) tested which climate variables along their respective flyways were best correlated with variation in dates of arrival. Additionally, we cross‐validated the dynamics from archived radar with data from eBird, a large‐scale citizen science database that provides an independent measure of avian occupancy. We found strong and significant correlations between radar‐estimated and eBird‐estimated occupancy dynamics in both Louisiana and Florida. Long‐term Louisiana occupancy dynamics conformed to our hypothesis that this region acts as a combined stopover and overwintering region whereas Florida occupancy dynamics were akin to a traditional winter region. Arrival to Louisiana during the study period was much earlier and took place over a much shorter arrival window than did arrival to Florida, which showed much more gradual arrival over the course of several months. At both sites, annual variation in mean arrival date was best explained by the amount of precipitation along the lower portions of their respective migration flyways.  相似文献   

14.
Disturbances cause high mortality in populations while simultaneously enhancing population growth by improving habitats. These countervailing effects make it difficult to predict population dynamics following disturbance events. To address this challenge, we derived a novel form of the logistic growth equation that permits time‐varying carrying capacity and growth rate. We combined this equation with concepts drawn from disturbance ecology to create a general model for population dynamics in disturbance‐prone systems. A river flooding example using three insect species (a fast life‐cycle mayfly, a slow life‐cycle dragonfly and an ostracod) found optimal tradeoffs between disturbance frequency vs. magnitude and a close fit to empirical data in 62% of cases. A savanna fire analysis identified fire frequencies of 3–4 years that maximised population size of a perennial grass. The model shows promise for predicting population dynamics after multiple disturbance events and for management of river flows and fire regimes.  相似文献   

15.
Enrique Murgui 《Ecography》2010,33(5):979-984
Although nested species subset patterns and mechanisms promoting them have constituted the focus of a considerable research effort, little attention has been paid to the role of seasonality in generating or moderating these patterns. I conducted monthly censuses of 130 urban parks in the city of Valencia throughout an annual cycle to assess whether seasonality influenced nested patterns of bird species assemblages. Specifically I tested the hypothesis that an increase in the movement of birds among parks outside of the breeding season, may reduce nestedness of resident birds. Results obtained in this study showed that assemblages of resident bird species were nested during the breeding season but not outside it, thus giving some support to the hypothesis. However, a reduction in nestedness outside the breeding season was not explained by an increase in the occupancy of parks but with an increase in the number of absences from parks that had been inhabited during the breeding season, most likely due to the use of habitats outside parks by some species (finches mainly). Results suggest the importance of both selective extinction and colonization processes in contributing to the degree of nestedness during the breeding season. However, environmental stress in the form of human disturbance apparently had little effect on the distributions of individual species. Habitat nestedness did not appear to be a factor as parks of all sizes were similar in number and type of habitats. An assessment of seasonality in other landscapes is needed to further understand its general effects on nestedness.  相似文献   

16.
Structure and distribution of animal territories are driven by a variety of environmental and demographic factors. A peninsular population of common loons (Gavia immer) nests on lakes in northwestern Montana, but does not occupy all apparently suitable breeding territories, suggesting unexplained limitations on population growth. To evaluate territorial dynamics of breeding loons in Montana, we created and tested occupancy models that evaluated the hypothesized effects of disturbance, habitat, and intraspecific relationships on territory occupancy by common loons in Montana from 2003 to 2007. Model-averaged results indicated that the abundance of feeding lakes within 10 km (i.e., forage quality) and the number of territorial pairs within 10 km (i.e., density of loons) were equally supported and related to probabilities of occupancy. We found substantial support that the population was in a state of equilibrium, with the numbers of occupied territories stable in time, but not space. We also found that density of territorial pairs was related to the likelihood that an existing territory would be abandoned, but did not influence the establishment of new territories, suggesting the presence of territorial pairs could be a stronger indicator of territory quality to loons than physical lake characteristics. Our index of human disturbance was not well-supported compared to other factors. Our results suggest management for stable or growing loon populations could be achieved using long-term monitoring and protection of occupied territorial lakes and nearby feeding lakes, because these factors most influenced the probability of occupancy of surrounding lakes. © 2011 The Wildlife Society.  相似文献   

17.
Spatial models commonly assume that dispersal rates are constant across individuals and environments and that movement directions are unbiased. These random-movement assumptions are inadequate to capture the range of dispersal behaviors revealed in diverse case studies. We examine an alternative assumption of directed movement, in which dispersal is a conditional and directional response by individuals to varying environmental conditions. Specifically, we assume individuals bias their movements to climb spatial fitness gradients. We compare the consequences of random and directed movement for local adaptation, the evolution of dispersal, and the reinforcement process. The implications of each movement strategy depend on the nature of environmental disturbance, and we examine the outcomes for undisturbed environments and with uncorrelated and autocorrelated disturbances. Both movement strategies offer advantages over sedentary life histories by allowing colonization of suitable habitats. However, random movement eventually becomes costly in stable environments because it inhibits local adaptation. In contrast, directed movement accelerates local adaptation. In disturbed environments, random movement offers bet-spreading advantages by distributing offspring across habitats. Despite being a more targeted strategy, an intermediate amount of directed movement provides similar bet-spreading benefits. These fitness consequences have implications for the evolution of dispersal. Dispersiveness is lost by random movers in undisturbed environments, is maintained in polymorphism with infrequent disturbances, and evolves when disturbances are uncorrelated. Directed movement becomes selectively neutral in the absence of disturbance, evolves when disturbances are autocorrelated, and is maintained in polymorphism with uncorrelated disturbances. Disturbance also determines the outcome of the reinforcement process for each strategy. For example, directed movers show no progress toward reinforcement in undisturbed environments, evolve random mating with uncorrelated disturbances, and can evolve assortative mating in infrequently disturbed environments.  相似文献   

18.
We investigated the site occupancy dynamics of greater prairie-chickens at Konza Prairie Biological Station, a protected site in northeastern Kansas that is managed for ecological research. We surveyed the site during mid-Mar to mid-May, 1981–2008, and recorded detections of birds in a grid of 6.3 ha survey plots (n = 187 plots). We used multiseason occupancy models to estimate the probabilities of occupancy (ψ) and detection (p), and tested whether land cover in woody vegetation, and land use with prescribed fire or grazing management influenced the dynamic processes of site colonization and local extinction. Probability of detection per site was consistently <1 and varied among years (p = 0.12–0.82). Site occupancy of prairie-chickens declined 40% over the study period from a high of ψ = 0.19 ± 0.02 SE in 1981 to a low of 0.11 ± 0.03 in 2008, despite protection from disturbance at leks and losses to harvest. We found that different sets of environmental factors impacted the probabilities of colonization and local extinction. Probability of colonization for an unoccupied site was negatively associated with the proportion of site occupied by woodland cover (β = −1.25), and was lower for grazed sites (β = −0.62). In contrast, probability of local extinction was affected by a weak interaction between grazing and average frequency of prescribed fire (β = −1.01), but model-averaged slope coefficients were not statistically different than 0. To conserve prairie-chickens, we recommend prairies be managed with combinations of prescribed fire and grazing that maintain a heterogeneous mosaic of prairie habitats, while preventing woody encroachment. To assess biotic responses to land management practices, field sampling should be based on occupancy models or similar techniques that account for imperfect detection. © 2011 The Wildlife Society.  相似文献   

19.
Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual-based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model to the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented landscape. We derive stochastic patch occupancy model (SPOM) approximations for the IBMs assuming pure demographic stochasticity, uncorrelated environmental stochasticity, or completely correlated environmental stochasticity in local dynamics. Using realistic parameter values for the Glanville fritillary, we show that the SPOMs mimic the behavior of the IBMs well. The SPOMs derived from IBMs have parameters that relate directly to the life history and behavior of individuals, which is an advantage for model interpretation and parameter estimation. The modeling approach that we describe here provides a unified framework for patchy populations with much movements among habitat patches and classic metapopulations with infrequent movements.  相似文献   

20.
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号