首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations ofScenedesmus quadricauda grown in a continuous chemostatic regime and synchronized by light and dark intervals were exposed to continuous illumination. The effect of light on synthetic and reproduction processes during the time of the omitted dark period and in the subsequent cell cycle was studied. In general, the sequence of cellular processes and their mutual coupling remain the same as in the darkened population. Synthetic processes and photosynthetic activity are depressed during the period of protoplast fission also in the light. The synchronizing effect of the dark period in chlorococcal algae consists in reducing the developmental variability in the population. The developmental state of daughter cells at the end of the dark interval varies in the span of two (as a rule) or four (at maximum) genomic cycles, while at the end of the light period this variability comprises up to eight genomic states. The more advanced autospores start the next cycle with a greater lag.  相似文献   

2.
Synchronous cultures of the chlorococcal alga Scenedesmus quadricauda were grown under optimal growth conditions. The mean length of their cell cycle was approximately 20 h. The cultures were treated at the start, at the 4th, and 8th hour of the cell cycle with 3,4-benzo(a)pyrene (BP) in the range of 0.1–0.5 g ml-1 of final concentration. A period about 4 h was found within which no inhibitory effects could be detected even at the highest BP concentrations used. In presence of BP the rates of RNA and protein syntheses gradually decreased until complete inhibition of net syntheses occurred. In a similar way chlorophyll synthesis was inhibited, and this was followed by gradual degradation of the chlorophyll. The higher the concentration of BP the more rapid the decrease of the rates of syntheses and the earlier their complete inhibition. At low BP concentrations while DNA replications were initiated, the number of replications was lowered. At higher concentrations the initiations of DNA replications were delayed or completely suppressed. Syntheses of saccharides were the least inhibited processes in presence of BP. Starch synthesis was slowed down at the end of the cell cycle and fructose synthesis (free and sucrose bound) was even stimulated later in the cell cycle. The release of daughter coenobia, and protoplast fissions were most susceptible to BP treatment, being affected at concentrations which produced no measureble disturbances of macromolecular syntheses. At BP concentrations at which the inhibition of macromolecular syntheses occurred, the delay or suppression of mitoses was observed.Abbreviations BP 3,4-benzo(a)pyrene - PhAR photosynthetically active radiation  相似文献   

3.
Experiments revealed that the synchronized cultures ofScenedesmus quadricauda, strainGreifswald/15, must be kept under continuous illumination throughout the whole growth phase (from the release of daughter coenobia up to the moment when all cells are capable of further reproduction). The length of the light period is among others the function of the suspension density. With regard to these facts a method of synchronization was worked out on the basis of a rhythmical repetition of the calculated light regime, corresponding to the physiological parameters of the synchronized strain under given cultivation conditions. This method enables to maintain synchronized cultures in adequate cycles for any required period, even in sufficiently dense, linearly growing suspensions. It may be applied to any chlorococcal algae; however, if coenobial types are studied, it is necessary to consider special peculiarities, which result from the regular arrangement of the cells in the coenobium.  相似文献   

4.
Daughter cells of the chlorococcal algaScenedesmus quadricauda incubated under photosynthesizing conditions in a phosphate-free medium accomplished one cell cycle but divided into a lower number of daughter cells compared to the control. RNA synthesis was restricted early in the cell cycle while protein synthesis was retarded as compared to the control only at the end of the cycle. The number of DNA replication rounds (and consequently the number of divisions) was reduced in proportion to the lower content of RNA per cell. Daughter cells produced by phosphorus-starved mother cells and grown further in a phosphorus free medium performed no net RNA, DNA and protein synthesis within the period corresponding to the duration of control cell cycle an o were unable to develop. They accumulated, however, about half the amount of starch found in normally developed mother cells. In a complete medium, the phosphorus-starved daughter cells resumed macromolecular syntheses with a lag of about 5 h. Thereafter, their development and reproductive processes were comparable to those in a healthy population. A similar course of recovery was obtained with starved daughter cells exposed to light in phosphorus-free medium for the period corresponding to one cell cycle. Thanks to the large amount of starch accumulated in these cells, they were able to run through an entire cell cycle in the dark after being supplied with phosphorus. The first response to phosphorus withdrawal from the nutrient medium was the restriction of RNA synthesis. This occurred in spite of the fact that phosphorus reserves in the cell were still abundant, which suggests an intimate link between the supply of exogenous phosphorus to the cell and RNA synthesis.  相似文献   

5.
Daughter cells of the chlorococcal algaScenedesmus quadricauda incubated under photosynthesizing conditions in a nitrogen-free medium did not make any progress in the cell cycle. Photosynthetic starch formation continued for a period corresponding to a half of the cell cycle and then levelled off. Protein synthesis was very slow and it did not surpass double the initial amount. RNA content decayed from the start of treatment and approached about 2 pg/cell. When a synchronous population was deprived of nitrogen or of light in the middle of the cell cycle RNA synthesis stopped immediately or very soon afterwards and, in spite ofabundant intracellular nitrogen reserves, RNA content slowly declined. This degradation was much extensive in nitrogen starved cells where, eventually, the RNA content attained about half the starting value. In both experimental variants, DNA replications started at the same time as in control culture, but the final amount of DNA attained only half the control value. Protein synthesis stopped immediately in the dark. In the nitrogen-starved cells, it continued for several hours and protein content increased about 70 % of the amount present at the start of starvation. The number of daughter cells formed was proportional to the final protein content in the nitrogen-and light-deprived cells (corresponding division numbers were 6 and 4, respectively). Upon refeeding of daughter cells formed under nitrogen starvation, RNA synthesis started immediately, while protein synthesis displayed a lag of about 5 h. DNA replications were triggered at the time when the ratio of RNA to DNA content attained the same value as in the control culture.  相似文献   

6.
Daughter cells of the chlorococcal algaScenedesmus quadricauda were incubated under photosynthesizing conditions in a sulphur-free medium. The course of the cell cycle under these conditions was changed in daughter cells which differed in their stage of development. In absence of sulphur, advanced daughter cells with two nuclei and 2 or 4 genomes passed a cycle identical with that of control in sulphur containing medium. Each cell yielded eight binuclear daughter cells. With less advanced daughter cells (one nucleus and 1 or 2 genomes) restriction of RNA synthesis occurred near to the end of the cell cycle and protein synthesis ceased two hours later (practically at the time of the protoplast fission). The last round of DNA replication found in the control culture was not initiated in sulphur-starved culture and uninuclear daughter cells with one genome were released. If the daughter cells coming from the starved populations were kept further in the sulphur-free medium, macromolecular syntheses were dramatically restricted. Only photosynthesis continued to produce starch at a similar rate as in normally grown cells. Thus, a very large amount of starch accumulated. Supported by these reserves, starved cells refed with sulphur passed an entire cell cycle in the dark and divided into eight daughter cells. In sulphur-supplied cells, both in the dark and in light, RNA, protein and DNA synthesis started without any delay in a similar way as in the control culture. Competition for sulphur reserves occurred between the growth and division processes; the former were preferred in the light and the latter in the dark.  相似文献   

7.
Chinese hamster ovary (CHO) cells, synchronized by selective detachment at mitosis, were treated with various concentrations of actinomycin D (AMD) or cycloheximide (CHX) either immediately, or 1, 2, or 3 hr after mitosis. Since the minimum duration of G1 phase in these cultures was 3.4 hr, the addition of RNA or protein synthesis inhibitors took place at the beginning, first third, second third, or end (G1–S boundary) of G1 phase. The kinetics of exit from G1 phase, the rate and extent of traverse of S phase, and the reaccumulation of RNA were estimated under each set of growth conditions by flow cytometry of acridine orange-stained cells. A mathematical model was constructed to describe the trajectories of the cell populations with respect to their increase in RNA and DNA content in the absence or presence of the inhibitor. The chronologic synchrony imposed on the CHO cell population began to decay within 3 hr, resulting in stochastic entrance of cells into S phase in the absence of inhibitor. Addition of AMD or CHX at 0, 1, 2, or 3 hr after mitosis, regardless of the inhibitor concentration, did not provide evidence of a critical restriction point in G1 beyond which cells were committed to enter S phase and were no longer sensitive to moderate suppression of RNA or protein synthesis. The observed kinetics of cell entrance into and traverse of S phase were consistent with an inherently heterogenous response to serum stimulation occurring at or just after cell division.  相似文献   

8.
9.
Effect of reduced protein synthesis on the cell cycle in sea urchin embryos   总被引:2,自引:0,他引:2  
We have reinvestigated the existence of cyclical fluctuations of protein synthesis and have examined the effects of reducing it in early embryos of the purple sea urchin, Strongylocentrotus purpuratus. The results show that protein synthesis increases linearly during the first 45-60 minutes after fertilization, then transiently decreases during mitosis, and rises again at first cleavage. Reducing protein synthesis of embryos to 35% its normal value only slightly affects the rate of progression through the cell cycle. It is also shown that the observed retardations of the cell cycle, under depressed protein synthesis, are attributable (by 80%) to a lengthening of the premitotic phase but also, to a lesser extent (20%), to a lengthening of the mitotic phase itself. These results suggest that mitotic proteins, in sea urchin embryos, are stable and little affected by an imposed decrease of protein synthesis during their accumulation phase. This analysis supports the view that specific mechanisms, other than decreased protein synthesis, need be turned on only at appropriate times during the cell cycle in order to explain the destruction or deactivation of mitotic proteins. Finally, a one-dimensional SDS-PAGE analysis of synthesized proteins, labeled with 35S-methionine, reveals the presence of a 50-kDa cyclin showing the expected characteristics of mitotic proteins deduced from our results.  相似文献   

10.
11.
12.
Ouabain inhibited in a concentration-dependent and completely reversible way, the synthesis of DNA, RNa and protein in phytohemagglutinin and concanavalin A-stimulated human lymphocytes without affecting the uptake of nucleosides and amino acids into the cells. On the other hand, ouabain even at very high concentrations was unable to interfere with the binding of [3H]concanavalin A. No correlation was found between the inhibition by ouabain of macromolecular synthesis and that of K+ transport. The inhibitor effect of ouabain on the stimulation of macromolecular synthesis could be partially reversed by higher concentrations of K+, due to the direct inhibition of ouabain binding. Ouabain added to the cultures at different stages of cell growth suppressed the incorporation of thymidine to various extents. Both ouabain sensitive stages fell in a period preceding the onset of mitosis and were characterized by very active thymidine incorporation. Lymphocytes were most sensitive to ouabain within the S phase. The results suggest that ouabain interferes with mitogen-triggered membrane-associated events, other than K+ transport, controlling mitosis at distinct phases of the cell cycle.  相似文献   

13.
Ouabain inhibited in a concentration-dependent and completely reversible way, the synthesis of DNA, RNA and protein in phytohemagglutinin and concanavalin A-stimulated human lymphocytes without affecting the uptake of nucleosides and amino acids into the cells. On the other hand, ouabain even at very high concentrations was unable to interfere with the binding of [3H]concanavalin A. No correlation was found between the inhibition by ouabain of macromolecular synthesis and that of K+ transport. The inhibitor effect of ouabain on the stimulation of macromolecular synthesis could be partially reversed by higher concentrations of K+, due to the direct inhibition of ouabain binding. Ouabain added to the cultures at different stages of cell growth suppressed the incorporation of thymidine to various extents. Both ouabain sensitive stages fell in a period preceding the onset of mitosis and were characterized by very active thymidine incorporation. Lymphocytes were most sensitive to ouabain within the S phase. The results suggest that ouabain interferes with mitogen-triggered membrane-associated events, other than K+ transport, controlling mitosis at distinct phases of the cell cycle.  相似文献   

14.
15.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1995,188(3-4):245-251
Summary DNA containing structures (cellular, chloroplast and mitochondrial nuclei) were stained with the fluorochrome DAPI. Fluorescence intensity, as a measure of DNA content, was estimated during the mitotic cycle in synchronized populations of the chlorococcal alga,Scenedesmus quadricauda. In cells yielding eight daughter cells, three consecutive steps in chloroplast DNA increase occurred over one mitotic cycle. The first step was performed shortly after releasing the daughter cells, the second and third steps occurred consecutively during the first half of the mitotic cycle. Commitment to chloroplast DNA replication was chronologically separated from commitment to division of chloroplast nuclei, revealing that these two chloroplast reproductive steps were under different control mechanisms. The replication of chloroplast DNA occurred at a different time to that of cell-nuclear DNA. The coordination of chloroplast reproductive processes and those in the nucleocytoplasmic compartment were governed by the mutual trophic and metabolic dependency of these compartments rather than by any direct or feedback control controlled by either of them.Abbreviations DAPI 46-diamidino-2-phenylindole - ptDNA DNA in chloroplast nuclei - nucDNA DNA in cell nuclei  相似文献   

16.
V. Zachleder  S. Kawano  T. Kuroiwa 《Protoplasma》1996,192(3-4):228-234
Summary FdUrd (5-fluorodeoxyuridine), a specific inhibitor of thymidylate synthase, was used to study the relationship between reproductive processes in chloroplast and nucleocytoplasmic compartments of the chlorococcal algaScenedesmus quadricauda. The courses of DNA replication and nuclear division in both the compartments were followed in populations synchronised by the alternation of light and dark periods. DAPI-staining of DNA-containing structures was used for their visualisation and quantification. In contrast with cellular reproductive events, those in chloroplasts were not substantially affected by the presence of FdUrd (25 g/ml). It was shown that FdUrd specifically blocked nucDNA replication but not ptDNA replication. Thus, cells which had attained commitment to ptDNA replication, fission of pt-nuclei and chloroplast kinesis triggered and terminated these processes while the corresponding cellular processes were blocked. The courses of reproductive processes in chloroplasts were also substantially unaffected in cells grown in the presence of FdUrd for the whole cell cycle. This provided evidence that attainment of commitment to and termination of the entire sequence of reproductive events, including chloroplast fission, were controlled by different mechanisms than the reproductive processes in the nucleocytoplasmic compartment.Abbreviations DAPI 4,6-diamidino-2-phenylindole - ptDNA DNA of chloroplast nuclei - nucDNA DNA in cell nuclei - FdUrd 5-fluorodeoxyuridine  相似文献   

17.
Summary Synchronous cultures of the green algaScenedesmus quadricauda were grown at different mean irradiances (ranging from 15 Wm–2 to 130Wm–2). At each irradiance, the algae were exposed to illumination regimes which differed in light duration and dark intervals (222 to 240 hours). The cells from these cultures were sampled during their cycles, stained with DAPI and the number of nuclei and chloroplast nucleoids estimated.The nucleoids divided semisynchronously in steps which represented doublings in their number. For each doubling a constant amount of light energy (defined as the product of irradiance and light duration) had to be converted by the cells to become committed to this division. The times to the start of the nucleoid divisions were therefore inversely proportional to the irradiances applied and the final number of nucleoids was proportional to the light duration.Temporal relationships between nuclear and nucleoid divisions were also light dependent. Shortage of light energy caused delay in nucleoid division. The cell division rate was higher than the rate of nucleoid division and consequently, the cells tended to decrease their nucleoid number with decreasing irradiance. With increasing irradiance the start of nucleoid division was gradually shifted toward the beginning of the cell cycle. The rate of nucleoid division exceeded the rate of nuclear and cellular division, thus with increasing irradiance cells with increasing numbers of nucleoids were formed.Abbreviations DAPI 46-diamidino-2-phenylindole - pt-DNA chloroplast DNA  相似文献   

18.
19.
A large number of ribosome synthesis factors have been identified using proteomic analyses in yeast. The patterns of RNA and protein co-precipitation suggest that ribosome synthesis does not proceed via a linear progression of successive steps. Recent analyses have identified several interactions between factors clearly implicated in ribosome synthesis and specific steps in the cell division cycle. The intersections between these pathways were not anticipated, but potential explanations for their existence can be advanced.  相似文献   

20.
Effect of the cell cycle on carcinogenesis   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号