首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each of several cultures of Werner's syndrome (WS) fibroblasts and lymphoblasts examined was found to be composed of one or several clones of cells with mutated chromosome complements. Two "sister" fibroblasts cell lines (FCLs) that were derived from a mixture of explants cut from the same WS skin biopsy were found to have completely different rearranged chromosome complements. Daily observation of the skin explants from which these two sister FCLs were derived revealed not only that no more than a few fibroblasts ever migrated from a given explant but also that fibroblasts migrated from only a few of the explants. Two of three lymphoblastoid cell lines (LCLs), each probably developed as an independent clone from a different cell from the same WS blood sample, were mosaic, comprised of cells having both normal and rearranged chromosome complements. The third LCL studied, although nonmosaic, had a rearranged chromosome complement, but one that was completely different from those in the other two lines. Based on the observations described, hypotheses have been formulated to explain both the preponderance in long-term WS cultures of clones with mutated chromosome complements and the abbreviated lifespan characteristic of WS fibroblast cultures.  相似文献   

2.
Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.  相似文献   

3.
Cytogenetic instability of dental pulp stem cell lines   总被引:1,自引:0,他引:1  
Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.  相似文献   

4.
Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76–80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11–13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells. A. A. Kruglova and E. A. Kizilova contributed equally to this work. This study was financially supported by grants from the Russian Academy of Sciences, Siberian Branch 5.2 and 14.0.  相似文献   

5.
Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.  相似文献   

6.
Mitochondrial DNA was quantitated in total DNA of various normal and mutant strains of human diploid fibroblasts (finite replicative lifespan) and permanent cell lines, using Southern-transfer hybridization to 32P-labeled pure mtDNA probe and saturation hybridization to 3H-labeled cRNA copied from mtDNA. In six normal fibroblast strains, mtDNA copy number increased during serial passage roughly in proportion to cell volume or protein content, whereas normalized mtDNA content per pg of protein depended upon in vivo donor age but not passage level ("in vitro" age). Copy numbers for mtDNA varied much more widely in individual fibroblast clones than in mass cultures, but were not well correlated with longevity or growth rate. Five mutant fibroblast strains associated with reduced replicative lifespan, and four permanent cell lines, were also examined; in each group, mtDNA values were observed both lower and higher than any obtained for normal fibroblasts. No evidence was found of petite-type deletions from human mtDNA, either at late passage or in individual clones of fibroblasts. Methylation of mtDNA genomes was strikingly non-random and apparently decreased with culture age.  相似文献   

7.
Mitotic anaphase cells of highly friable and embryogenic calluses which had been induced from immature embryos of two inbred lines of maize that have contrasting levels of heterochromatic knobs were analysed for the presence of abnormalities 3, 6, 9 and 12 months after the initiation of culture. A total of 500 typical anaphases was scored at each time point, and various aberrations, such as delay in the separation of sister chromatides, chromosome bridges (single, double and multiple) and chromosome fragments, were revealed to occur extensively in the cultures of both genotypes. Preparations after C-banding revealed that primary breakages often occurred inside knobs or at junction regions between the euchromatin and the heterochromatin of the knobs. Figures characterized by the delayed separation of sister chromatids, which originated preferentially at the knob level and was considered to be an initial event in the development of breakages, were observed at constant frequencies throughout the experiment. Increasing numbers of aberrant cells were detected with time, mainly due to the accumulation of cells with chromosome bridges and fragments. Several mitotic figures suggested the occurrence of breakagefusion-bridge cycles that were initiated by broken chromosomes. The overall frequencies of aberrant cells were similar for both genotypes, despite the differences in knob composition. However, callus cultures induced from the genotype having the higher level of knobs had more aberrant cells with abnormalities that involved several chromosomes, such as multiple bridges and multiple fragments.  相似文献   

8.
目的:为探索鸡胚胎干细胞培养的优化条件,比较不同饲养层对鸡胚胎干细胞离体培养的效果。方法:用传至第2代的鸡胚成纤维细胞与鸭胚成纤维细胞,经丝裂霉素处理后制作饲养层,比较这2种饲养层以及不用饲养层对鸡胚胎干细胞离体培养效果的影响。结果:在以鸡胚成纤维细胞和鸭胚成纤维细胞作为饲养层的培养体系中,鸡胚胎干细胞均可保持良好的生长状态,而且2种饲养层对鸡胚胎干细胞克隆形成的影响差异不显著(P0.05)。结论:鸡胚成纤维细胞和鸭胚成纤维细胞均可作为较好的饲养层细胞用于鸡胚胎干细胞的离体培养。  相似文献   

9.
The ability of PSA1 embryonal carcinoma cells to differentiate when grown as clones on a monolayer of feeder cells was assessed using morphological criteria. The first appearance of a differentiated phenotype within a clone occurred at different times for individual clones after 10 days of culture, this being apparently unrelated to clone size or cell density. Those clones which showed no morphological evidence of differentiation after several weeks (about 5% of the clones observed) were selected and recloned with the aim of finding variant lines which were stably deficient in their differentiating ability. Undifferentiated clones - identified and selected after about 3 weeks of growth - were of three different types after recloning: those similar to control cultures of PSA1, those having delayed and reduced differentiation frequency, and those having variable frequencies of differentiation in replicate reclonings. The isolation of a variant with a more complete differentiation deficiency was accomplished by selecting ten nondifferentiating clones growing isolated in individual culture wells after 5 weeks of culture. One of these, T2H9, proved to be a stable, differentiation-deficient variant subline with less than 3% of its clones showing any morphological evidence of differentiation in five repeated reclonings. It was also determined that the frequency of undifferentiated clones in embryonal carcinoma cultures increased from 0.3% to 54% after 11 months of in vitro aging, i.e., approximately 200 cell doublings. The isolation of clonal embryonal carcinoma cell derivatives which are stable, heritable differentiation variants provides resources for somatic-cell genetic analysis of stem-cell pluripotency.  相似文献   

10.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

11.
Human embryonic stem cell (hESC) lines are traditionally derived and maintained on mouse embryonic fibroblasts (MEF) which are xenogeneic and enter senescence rapidly. In view of the clinical implications of hESCs, the use of human fibroblast as feeders has been suggested as a plausible alternative. However, use of fibroblast cells from varying sources leads to culture variations along with the need to add FGF2 in cultures to sustain ES cell pluripotency. In this study we report the derivation of FGF2 expressing germ layer derived fibroblast cells (GLDF) from hESC lines. These feeders could support the pluripotency, karyotypes and proliferation of hESCs with or without FGF2 in prolonged cultures as efficiently as that on MEF. GLDF cells were derived from embryoid bodies and characterized for expression of fibroblast markers by RT-PCR, Immunofluorescence and by flow cytometry for CD marker expression. The expression and secretion of FGF2 was confirmed by RT-PCR, Western blot, and ELISA. The hESC lines cultured on MEF and GLDF were analyzed for various stemness markers. These feeder cells with fibroblast cells like properties maintained the properties of hESCs in prolonged culture over 30 passages. Proliferation and pluripotency of hESCs on GLDF was comparable to that on mouse feeders. Further we discovered that these GLDF cells could secrete FGF2 and maintained pluripotency of hESC cultures even in the absence of supplemental FGF2. To our knowledge, this is the first study reporting a novel hESC culture system which does not warrant FGF2 supplementation, thereby reducing the cost of hESC cultures.  相似文献   

12.
Malignant tumors comprise a small proportion of cancer-initiating cells (CIC), capable of sustaining tumor formation and growth. CIC are the main potential target for anticancer therapy. However, the identification of molecular therapeutic targets in CIC isolated from primary tumors is an extremely difficult task. Here, we show that after years of passaging under differentiating conditions, glioblastoma, mammary carcinoma, and melanoma cell lines contained a fraction of cells capable of forming spheroids upon in vitro growth under stem cell-like conditions. We found an increased expression of surface markers associated with the stem cell phenotype and of oncogenes in cell lines and clones cultured as spheroids vs. adherent cultures. Also, spheroid-forming cells displayed increased tumorigenicity and an altered pattern of chemosensitivity. Interestingly, also from single retrovirally marked clones, it was possible to isolate cells able to grow as spheroids and associated with increased tumorigenicity. Our findings indicate that short-term selection and propagation of CIC as spheroid cultures from established cancer cell lines, coupled with gene expression profiling, represents a suitable tool to study and therapeutically target CIC: the notion of which genes have been down-regulated during growth under differentiating conditions will help find CIC-associated therapeutic targets.  相似文献   

13.
5个品系小鼠胚胎干细胞系建立的方法学比较   总被引:11,自引:0,他引:11  
以70%的大鼠心脏细胞条件培养基(RH-CM)为培养液,以小鼠胚胎成纤维细胞(PMEF)为饲养层,采用添加1%鸡血清的消化液和“连续离散法”作为小鼠Es细胞建系的改进方法,比较了5个品系小鼠ES细胞系建立的特点。与常规方法相比,3个近交系小鼠129/ter、C57BL/6J、BALB/c的ES细胞建系率分别由11.8%、3.7%和2.9%提高到33.3%、13.3%和19.4%,差异十分显著;直接采用改进的方法建立KM和ICR小鼠ES细胞系,建系率分别达12%和42.1%。讨论了ICM增殖的时间,即离散时机对ES集落形成及建系率的影响,结果显示:129/ter、C57BL/6J、BALB/c、KM和ICR小鼠品系ICM适宜的离散时机分别为增殖4~6d、3~3.5d、4d、4~5d和4~5d;同时,讨论了不同ES细胞建系所需最适宜的消化液浓度,其中BALB/c小鼠的ES细胞对高浓度的消化液十分敏感,0.05%Trypsin-0.008%EDTA是其比较理想的离散浓度。设计了两种离散方法,即“一次离散法”和“连续离散法”,用来离散增殖的ICM和ICM离散后出现的ES集落,结果表明:后者在建系过程中的作用明显优于前者。RH-CM与添加uF的常规ES细胞培养基相比,不但具有显著抑制小鼠ES细胞分化、维持其二倍体核型的作用,而且明显促进ES细胞的贴壁生长。新建细胞系鉴定结果表明,这一改进方法有效地维持了其作为多能性胚胎干细胞的一系列特征。  相似文献   

14.
This study aims to examine whether or not cancer stem cells exist in malignant peripheral nerve sheath tumors (MPNST). Cells of established lines, primary cultures and freshly dissected tumors were cultured in serum free conditions supplemented with epidermal and fibroblast growth factors. From one established human MPNST cell line, S462, cells meeting the criteria for cancer stem cells were isolated. Clonal spheres were obtained, which could be passaged multiple times. Enrichment of stem cell-like cells in these spheres was also supported by increased expression of stem cell markers such as CD133, Oct4, Nestin and NGFR, and decreased expression of mature cell markers such as CD90 and NCAM. Furthermore, cells of these clonal S462 spheres differentiated into Schwann cells, smooth muscle/fibroblast and neurons-like cells under specific differentiation-inducing cultural conditions. Finally, subcutaneous injection of the spheres into immunodeficient nude mice led to tumor formation at a higher rate compared to the parental adherent cells (66% versus 10% at 2.5 × 10(5)). These results provide evidence for the existence of cancer stem cell-like cells in malignant peripheral nerve sheath tumors.  相似文献   

15.
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.  相似文献   

16.
The putative tumor stem cell marker CD133 is the marker of choice for identifying brain tumor stem cells in gliomas, but the use of different CD133 antibody clones possibly recognizing different CD133 splice variants with epitopes of different glycosylation status confuses the field. The aim was to investigate if current inconsistent CD133 observations could be a result of using different CD133 antibodies for immunohistochemical identification of CD133. Ten glioblastomas were immunohistochemically stained with four different CD133 antibody clones (AC133, W6B3C1, C24B9, and ab19898) and analyzed by quantitative stereology. Moreover, the CD133 staining pattern of each antibody clone was investigated in kidney, pancreas, and placenta tissue as well as in glioblastoma and retinoblastoma cultures and cell lines. All antibody clones revealed CD133+ niches and single cells in glioblastomas, but when using different clones, their distribution rarely corresponded. Morphology of identified single cells varied, and staining of various tissues, cultures, and cells lines was also inconsistent among the clones. In conclusion, the authors report inconsistent CD133 detection when using different primary CD133 antibody clones. Thus, direct comparison of studies using different antibody clones and conclusions based on CD133 immunohistochemistry should be performed with caution.  相似文献   

17.
Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20-30 cell doublings in vitro, the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

18.
Abstract. Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20–30 cell doublings in vitro , the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

19.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

20.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus, and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos. At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号