首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT Paramecium tetraurelia contains high concentrations of ethanolamine sphingolipids, especially in its ciliary membrane. Three ethanolamine sphingophospholipids with different long chain bases (dihydrosphingosine, sphingosine and phytosphingosine), and their phosphonyl analogs, were previously identified and characterized. In the present study, radiolabeling experiments on lag- and log-phase cells were performed to investigate the extent of sphingolipid biosynthetic capacities of the ciliate. Long chain bases of sphingolipids are formed by an initial condensation reaction of serine with a fatty-coenzyme A. Thus, radiolabeled palmitic acid, stearic acid and serine were used as precursor compounds in these experiments. The results indicated that (1) sphingolipid precursors were incorporated into every major lipid fraction. (2) ethanolamine sphingophosphonolipids accumulated faster than the ethanolamine sphingophospholipids, (3) in contrast to these sphingolipids, the glycerolipid, phosphatidyethanolamine. accumulated faster than its phosphono analog, and (4) palmitic acid, but not stearic acid, was incorporated into the long chain bases of ethanolamine sphingophospho- and sphingophosphonolipids. consistent with an earlier report demonstrating that these lipids contain only C,g long chain bases. Since P. tetraurelia takes up serine and other water-soluble substrates very slowly, and catabolizes fatty acids rapidly, label is randomized in intact cells. Thus, cell-free protocols provide useful experimental systems for studies of sphingolipid biosynthesis than do intact organisms, when the uptake of precursor substrates are slow.  相似文献   

2.
Membranes from rat cerebral cortex are able to bind S-adenosyl-L-homocysteine (SAH) with a KD of 5 . 10(-7) M and n of 170 pmol/g fresh tissue (i.e. 20 mg protein). The binding is enhanced by Mg2+ and Ca2+ but not K+ and Na+. gamma-Aminobutyric acid, diazepine, noradrenaline and alpha antagonists are without any effect; S-adenosyl-L-methionine, adenosine and adenosine triphosphate inhibit SAH binding. Linkage with an adenosine receptor has not been expressly demonstrated by our method. SAH binding proteins are more abundant in the crude synaptosomal pellet (P2). A similar fixation seems to occur on brain membranes after [3H]SAH administration to rat. The binding might be linked to a methylase activity or an adenosine receptor.  相似文献   

3.
Phosphatidylserine, which is necessary for protein kinase C activity, is synthesized in mammalian tissues by the Ca2+-dependent base exchange enzyme. The synthesis of phosphatidylserine is greater in slices or homogenates of rat cerebral cortex subjected to hypoxia by N2 treatment when compared with O2 plus 5% CO2. An intermediate effect was observed when the treatment was done with N2 plus 5% CO2. Incorporation rates were dependent on Ca2+ in Krebs-Henseleit Ringer bicarbonate medium, being greater with 2 mM Ca2+ than with the same medium prepared without Ca2+. The increase of phosphatidylserine synthesis, due to hypoxia, was, on the contrary, more evident in the medium lacking added Ca2+. Similar results were obtained with the homogenates. This suggests that elevation of intracellular Ca2+, caused by hypocapnia and hypoxia, may be responsible for the greater incorporation of serine into phosphatidylserine. In both cerebrocortical slices and homogenate, [14C]serine incorporation decreased with development both in O2 plus 5% CO2 and N2-treated preparations. However, in younger rats (14–18 days) hypoxia induced a lesser increase of phosphatidylserine than in 40 day old animals. We suggest that a regulatory mechanisms for phosphatidylserine synthesis is established during development and that N2-treatment can increase phosphatidylserine synthesis by interfering with this regulatory mechanism.Abbreviations KRB Krebs-Henseleit Ringer bicarbonate - KRP Krebs Ringer phosphate - PS serine glycerophospholipids  相似文献   

4.
Synaptosomes isolated on isosmotic Ficoll density gradients are an effective model for some aspects of neuronal function. They maintain metabolic energy levels ([ATP]/[ADP] [Pi1) and transplasma membrane electrical potentials very similar to those of neurons in the intact brain. The concentration of K+ in the external medium (K+-sensitive electrode), O2 uptake, and cytochrome c reduction (550 nm minus 540 nm) were simultaneously monitored in synaptosomal suspensions. Oxidative metabolism is the primary source of intrasynaptosomal ATP and at pH 7.4 anaerobiosis results in K+ leakage at 4.5 ± 0.8 nmol/min/mg protein with glucose as substrate and 10.7 T 1.9 nmol/min/mg protein with lactate plus pyruvate (10:1) as substrate. Reintroduction of oxygen initiates complete (ouabain-sensitive) reuptake of K. at initial rates of 35.4 ± 3.2 nmol/min/mg protein and 18 ± 1.7 nmol K-/min/mg protein, respectively. The rates of K+ leakage and reuptake fall when the pH is lowered from 7.4 to 6.0 but recover fully if the pH is raised to the original value. The rates of K1 release and uptake decrease when the Na- concentration in the medium is decreased and increase when the Ca2- concentration is decreased. The intrasynaptosomal [K+] under aerobic conditions was 77.3 ± 3 MM and the calculated K+ diffusion potential was -72 mV. Anaerobic incubation of the synaptosomes for up to 20 min and at pH values from 7.4 to 6.0 did not produce irreversible impairment of any of the measured variables. These results suggest that permanent loss of brain function following prolonged hypoxia and ischemia is not due to irreversible damage to the synapses with respect to these parameters but rather to impairment of some other neuronal functions.  相似文献   

5.
Abstract: The anthelmintic macrolide, ivermectin, enhances the binding of benzodiazepine agonist ([3H]-diazepam) and antagonist ([3H]β-carboline ethyl ester) ligands to rat cortical and cerebellar membrane preparations. Enhancement of benzodiazepine agonist binding is partially additive with that of γ-aminobutyric acid (GABA) and is inhibited by etazolate, bicuculline, and the steroid GABA antagonist R5135. Ivermectin-stimulated benzodiazepine antagonist binding is enhanced by bicuculline and inhibited by GABA and etazolate. The modulatory effects of bicuculline are chloride-dependent. The stimulatory effects of ivermectin, while quantitatively different in cortex and cerebellum, are qualitatively similar in both brain regions and are reduced in the presence of chloride. Ivermectin effects on benzodiazepine ligand binding to the benzodiazepine receptor complex and the differences in the effects of GABA, bicuculline, and R5135 on ivermectin-stimulated agonist and antagonist binding may provide evidence for distinct differences in the recognition sites for the two classes of benzodiazepine receptor ligand and their interactions with other components of the receptor complex.  相似文献   

6.
7.
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and -glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5–3.0 mM and cytochrome c oxidase activity by 22–30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.  相似文献   

8.
Release of ethanolamine, serine, and choline in rat pontine nuclei on electrical stimulation of afferents from the cortex was investigated using in vivo push-pull cannula techniques. Ethanolamine was determined by using gas chromatographic techniques; serine was measured with a HPLC system; and choline was assayed with a luminescence method. Resting elution rates of ethanolamine, serine, and choline were 50.8 +/- 8.4, 34.8 +/- 12.6, and 1.16 +/- 0.20 pmol/5 min, respectively. Stimulation of the cortico-pontine tract evoked a highly significant 3.4-fold increase in release of ethanolamine, whereas serine and choline release was unaffected. Reactions in membrane phospholipids are most likely involved in the stimulation-dependent release of ethanolamine and special consideration was given to base-exchange reactions. Alternatively, a release from intracellular, possibly synaptic stores cannot be excluded.  相似文献   

9.
目的 探讨宫内缺氧对新生大鼠大脑皮质神经元与VEGF mRNA表达的影响以及当归的调控作用.方法 孕14 d健康SD雌性大鼠15只,随机分为对照组、缺氧组和当归组各5只,于孕14 d开始将当归组与缺氧组孕鼠置于低张氧浓度三气培养箱中,制作胎鼠宫内缺氧模型,此前一小时按8 mL/kg分别给予当归和生理盐水尾静脉注射,对照组不缺氧,余同缺氧组.三组孕鼠分娩当日每窝随机选取新生鼠4只,取脑组织多聚甲醛固定,石蜡包埋切片、NSE mRNA、VEGF mRNA原位杂交,400倍拍照、IPP6.0软件图像分析.结果 缺氧组新生大鼠大脑皮质NSE mRNA阳性细胞数较对照组减少,积分光密度值(IOD)降低(P<0.05),VEGF mRNA阳性细胞IOD值升高(P<0.05);当归组新生大鼠大脑皮质NSE mRNA阳性细胞数较缺氧组增多、IOD值增高(P<0.05),VEGF mRNA阳性细胞IOD值增高(P<0.05).结论 宫内缺氧可致新生大鼠大脑皮质神经元受损,当归注射液对此损伤有一定保护作用,其机制可能是通过上调大脑皮质VEGF mRNA的表达而使缺氧环境改善.  相似文献   

10.
Abstract: The pathophysiology of infantile hydrocephalus is poorly understood, and shunt treatment does not always lead to a normal neurological outcome. To investigate some of the neurochemical changes in infantile hydrocephalus and the response to shunt treatment, we have used high-resolution 1H-NMR spectroscopy to analyze extracts of cerebral cortex from H-Tx rats, which have inherited hydrocephalus with an onset in late gestation. Hydrocephalic rats and rats with shunts placed at either 4 or 12 days after birth were studied at 21 days after birth, together with age-matched control littermates. In hydrocephalic rats there was a 46–62% reduction in the following compounds: myo -inositol, creatine, choline-containing compounds, N -acetyl aspartate, taurine, glutamine, glutamate, aspartate, and alanine. Phosphocreatine, glycine, GABA, and lactate were also reduced but not significantly. These changes are consistent with neuronal atrophy rather than ischemic damage. In hydrocephalic rats that received shunt treatment at 4 days, there were no significant reductions in any chemicals, indicating a normal complement of neurons. However, some compounds, particularly taurine, were elevated above control. After treatment at 12 days, N -acetyl aspartate and aspartate remained significantly reduced, suggesting continued neuronal deficiency.  相似文献   

11.
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.  相似文献   

12.
We studied the effects of early postnatal hypoxia on the efficiency of active GABA transport through the plasma membrane of synaptic terminals (synaptosomes) isolated from the cerebral cortex, hippocampus, and thalamus of rats and on non-stimulated and Ca2+-stimulated GABA release. The state of hypoxia was induced by exposure of 10- to 12-day-old rats to a respiratory medium with low O2 content (4% О2 and 96% N2) for 12 min (up to the initiation of clonico-tonic seizures). Animals were taken in the experiment 8 to 9 weeks after an episode of hypoxic stress. The intensity of transmembrane transport of GABA was estimated according to accumulation of [3Н]GABA in a coarse synaptosomal fraction. The process was characterized by calculation of the Michaelis constant K m and also of the initial (within the 1st min) and maximum rates of accumulation of [3Н]GABA. The means of the initial rate of [3Н]GABA accumulation in preparations from the thalamus, cortex, and hippocampus were 205.5 ± 8.8, 266.2 ± 29.6, and 302.3 ± 31.2 pmol/min⋅mg protein, respectively. Hypoxic stress influenced the rates of accumulation of [3Н]GABA in synaptic terminals from the cortex and hippocampus but not in those from the thalamus. According to the characteristics of the response to hypoxic stress, all experimental animals could be classified into two groups. In some rats, accumulation of [3Н]GABA in both cortical and hippocampal synaptosomes decreased insignificantly (by about 15%), while in other animals this parameter increased significantly (by nearly 50%) for the cortex and decreased by 21.5%, on average, for the hippocampus. The affinity of the transporter with respect to [3Н]GABA in the cortex and hippocampus was nearly the same and showed no changes under the influence of hypoxia. The non-stimulated release of [3Н]GABA after the influence of hypoxia increased in all structures, while the depolarization-induced Ca2+-dependent release of [3Н]GABA was intensified only in synaptosomes from the cerebral cortex. The mechanisms of development of modifications of GABA-ergic processes under the influence of hypoxic stress in the course of the perinatal period are discussed. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 293–302, July–August, 2008.  相似文献   

13.
Abstract: Incorporation of [1-14C]palmitic acid into neutral lipids and phospholipids of rat cerebral cortex was examined in vitro in normal Krebs-Ringer bicarbonate buffer containing 3% (wthol) albumin and 0.75 mM palmitic acid. Under standard assay conditions, radioactivity in the triacylglycerol fraction increased rapidly during the first 30 min, and then decreased after 60 min, with corresponding increase in radioactivity in phosphatidyl choline, phosphatidyl ethanolamine, and a fraction of phosphatidyl inositol plus phosphatidyl serine. Diacylglycerol was shown to be an intermediate metabolite. Radioactivity increased in triacylglycerol, and decreased in phosphatidyl choline and phosphatidyl ethanolamine throughout incubation under NZ gas. In the fraction of phosphatidyl inositol plus phosphatidyl serine, radioactivity decreased after 30 min during incubation under N, gas. A possible acylation-deacylation cycle, in which triacylglycerol could be a source of free fatty acids for phospholipids, is discussed.  相似文献   

14.
The present study tested the hypothesis that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in Ca2+/Calmodulin-dependent-kinase (CaM Kinase) IV and Protein Tyrosine Kinase (PTK ) activities. Animals were randomly divided into normoxic (Nx), hypoxic (Hx) and magnesium-pretreated hypoxic (Mg2+-Hx) groups. Cerebral hypoxia was confirmed biochemically by measuring ATP and phosphocreatine (PCr) levels. CaM Kinase IV and PTK activities were determined in Nx, Hx and Mg2+-Hx newborn piglets. There was a significant difference between CaM kinase IV activity (pmoles/mg protein/min) in Nx (270 ± 49), Mg2+-Hx (317 ± 82) and Hx (574 ± 41, P < 0.05 vs. Nx and Mg2+-Hx) groups. Similarly, there was a significant difference between Protein Tyrosine Kinase activity (pmoles/mg protein/h) in normoxic (378 ± 68), Mg2+-Hx (455 ± 67) and Hx (922 ± 66, P < 0.05 vs. Nx and Mg2+-Hx ) groups. We conclude that magnesium sulfate administration prior to hypoxia prevents hypoxia-induced increase in CaM Kinase IV and Protein Tyrosine Kinase activities. We propose that by blocking the NMDA receptor ion-channel mediated Ca2+-flux, magnesium sulfate administration inhibits the Ca2+/calmodulin-dependent activation of CaMKIV and prevents the generation of nitric oxide free radicals and the subsequent increase in PTK activity. As a result, phosphorylation of CREB and Bcl-2 family of proteins is prevented leading to prevention of programmed cell death.  相似文献   

15.
本文应用大鼠心肌细胞缺氧/复氧损伤模型,探讨microRNA-21(miR-21)在大鼠心肌缺氧复氧损伤中的作用及其对细胞自噬的影响.缺氧复氧后,RT-PCR检测发现心肌miR-21表达上调(P0.05),流式细胞术检测表明细胞凋亡增加,RT-PCR及蛋白质印迹(Western blot)检测发现p62显著下调而beclin-1显著上调(P0.05),提示缺氧复氧诱导心肌细胞凋亡和自噬异常.脂质体转染miR-21 mimic后,细胞凋亡显著增加(P0.05),p62显著上调而beclin-1显著下调(P0.05),而转染miR-21抑制剂引起相反结果,提示miR-21在心肌缺氧复氧损伤中具有促进细胞凋亡、抑制细胞自噬的作用.生物信息学预测显示,Rab11a的3′-UTR含有miR-21的结合位点,双荧光素酶基因报告系统及Rab11a过表达实验表明Rab11a是miR-21的靶基因之一.心肌过表达Rab11a能减少缺氧复氧后miR-21介导的细胞凋亡及自噬.由此表明,在大鼠心肌缺氧复氧损伤中,miR-21可能通过负调控Rab11a促进心肌细胞凋亡,抑制心肌细胞自噬.本研究可能为预防和治疗心肌缺血再灌注损伤提供新策略.  相似文献   

16.
The subcellular distribution of peptide histidine isoleucine amide (PHI)-27-like peptides (PLP) was investigated in rat cerebral cortex and whole rat brain in comparison with the distribution of vasoactive intestinal peptide (VIP). The highest content of PLP was found in the crude mitochondrial fraction (P2) and was also detected in the microsomal pellet. PLP was recovered in synaptosomes when further fractionation of P2 was performed. This distribution of PLP closely follows that of VIP and is suggestive of possible storage in vesicles at the nerve terminal. Basal release of PLP from rat cerebral cortical slices was below the detection limit of the PHI radioimmunoassay. However, depolarization by 55 mM potassium induced measurable PLP release. This release was calcium-dependent. These findings support the hypothesis that PLP could play a role in neurotransmission.  相似文献   

17.
Abstract: Uptake of L-glutamine (2 mM) by rat brain cortex slices against a concentration gradient is markedly inhibited (40%) by branched-chain Lamino acids (1 mM), L-phenylalanine (1 mM), or L-methionine (1 mM); that of L-asparagine (2 mM) is much less affected by these amino acids. Other amino acids investigated have little or no effect on cerebral L-glutamine uptake. The suppressions of L-glutamine uptake by the inhibitory amino acids are apparently blocked by high [K+], which itself has little or no effect on glutamine uptake. This abolition of suppression is partly explained by high [K+] retention of endogenous glutamine; in the absence of Ca2+ such retention disappears. The inhibitory amino acids (1 mM) also enhance the release of endogenous glutamine, exogenous glutamine with which slices have been loaded, or glutamine synthesized in the slices from exogenous glutamate. The enhanced release of endogenous glutamine is diminished by high [K+]. The suppression of glutamine uptake by the branched-chain amino acids is independent of the concentration of glutamine at low concentrations (0.25–0.5 mM), indicating non-competition, but is reduced with high concentration of glutamine. The inhibition by L-phenylalanine is noncompetitive. L-Glutamine (2 mM) exerts no inhibition of the cerebral uptakes of the branched-chain L-amino acids or Lphenylalanine (0.25–2 mM). The inhibitory amino acids are as active in suppressing L-glutamine uptake with immature rat brain slices as with adult, although the uptake, against a gradient, of L-glutamine in the infant rat brain is about one-half that in the adult. They are also just as inhibitory on the concentrative uptake of L-glutamine by a crude synaptosomal preparation derived from rat brain cortex. Such a nerve ending preparation takes up L-glutamine (0.25 mM), against a gradient, at about ninefold the rate at which it is taken up by cortex slices (for equal amounts of protein), and the uptake process is markedly suppressed by high [K+] in contrast to the effects of high [K+] with slices. The possible physiological and pathological consequences of the suppression of glutamine uptake are discussed.  相似文献   

18.
Abstract: The effect of hydrocephalus on cerebral energy metabolites and on intermediates of membrane phospholipid metabolism has been studied in H-Tx rats with inherited infantile hydrocephalus. Hydrocephalic rats and rats with shunts placed at 4–5 days or at 10 days after birth were subjected to magnetic resonance imaging in vivo before 21 days of age to determine the dimensions of the ventricles and cortex. At 21 days, the brains from the three groups of rats, together with age-matched control littermates, were frozen in situ, and chloroform/methanol extracts of cerebral cortex were prepared for high-resolution 31P-NMR spectroscopy. Hydrocephalus resulted in modest decreases in most metabolites quantified. Levels of phosphocreatine, ATP, and diphosphodiesters plus NAD were significantly reduced by 23–32%, and inorganic phosphate content was reduced but not significantly. Levels of the membrane phospholipid intermediates phosphorylethanolamine, glycerophosphorylethanolamine, and glycerophosphorylcholine were also significantly reduced by 30–33%, indicating changes in membrane metabolism. These general decreases are consistent with a loss of cell contents, possibly due to changes in dendrite structure in hydrocephalus. Rats shunt-treated at 4–5 days were similar to control rats for all energy metabolites, but those treated later at 10 days had reduced phosphocreatine and ATP levels. Shunt-treated rats also had reductions in levels of membrane phospholipids, some of which occurred in sham-operated rats. It is concluded that hydrocephalus leads to reductions in levels of energy metabolites and in levels of membrane phospholipids and that the changes in energy metabolites can be reversed by early, but not by later, shunt treatment.  相似文献   

19.
Isolated rat pineal glands were incubated in vitro in a medium containing [14C]dopamine or [14C]tyrosine, and the tissue contents of 14C-labelled and total dopamine and noradrenaline were determined by HPLC followed by electrochemical detection and scintillation spectrometry. During incubation with [14C]dopamine, the labelled amine accumulated in pineal glands and was partially converted into [14C]noradrenaline. Nomifensine, a neuronal amine uptake blocker, largely inhibited the accumulation of [14C]dopamine and the formation of [14C]noradrenaline. These experiments demonstrated dopamine beta-hydroxylase activity in the sympathetic nerves of the pineal gland. During incubation with [14C]tyrosine, formation of [14C]dopamine and [14C]noradrenaline was observed in the pineal tissue, indicating that noradrenaline can also be synthesized from dopamine, endogenously formed in the gland. Electrical stimulation of the stalk region of the pineal gland during incubation with [14C]dopamine enhanced the accumulation of [14C]dopamine and synthesis of [14C]noradrenaline. Electrical stimulation also enhanced the formation of [14C]dopamine during incubation with [14C]tyrosine. Compared to that at midday, the tissue content of endogenous noradrenaline at midnight was enhanced by 50% and that of dopamine by 450%. The in vitro accumulation of [14C]dopamine, as well as the synthesis of [14C]dopamine and [14C]noradrenaline, was also increased at midnight. In conclusion, sympathetic nerves in the rat pineal gland contain tyrosine hydroxylase and dopamine beta-hydroxylase, the two enzymes required for the synthesis of noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号