首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have surveyed three natural populations of Drosophila ananassae for restriction map variation at the forked (f) and vermilion (v) loci, using 6-cutter restriction enzymes. Both loci are located in the centromeric region of the X chromosome. Two major conclusions can be drawn from the data. First, we found strong evidence for population subdivision, i.e., significant differences in the frequency distributions of polymorphisms and/or haplotypes between the Burma, India, and Brazil populations. Secondly, the pattern of DNA sequence variation between the two loci is unexpectedly different. The level of nucleotide variation in the v locus region is reduced (relative to f), especially in the Burma population. Furthermore, in contrast to v, we found no insertions/deletions larger than 700 bp and no significant linkage disequilibrium at f. The genetic differentiation among subpopulations can readily be attributed to restricted migration as the predominant evolutionary force. According to population genetics theory, the differences in DNA polymorphisms between the two loci are in qualitative agreement with the hypothesis that recombination is reduced in the v locus region ("centromere effect") but not at f. In order to test this hypothesis directly, we determined the cytogenetic positions of several loci in the centromeric region by in situ hybridization and found by comparison with the genetic map that recombination at v is indeed very low, much lower than at f.  相似文献   

2.
A series of transposon-induced optic morphology (Om) mutants found in a hypermutable marker stock of Drosophila ananassae provides a useful system for analyzing the molecular mechanism of eye morphogenesis. In the present study, one of the 25 Om loci so far reported, Om(2D), has been subjected to histological and molecular analyses as a first step toward understanding the role of Om genes in eye morphogenesis. Histological abnormalities observed during eye morphogenesis of the mutant, i.e. cell death within the eye-antennal discs of third instar larvae, and loss of the lamina, disorganized ommatidia and atrophied optic lobes in adults, were all comparable to those reported with various eye morphology mutants of D. melanogaster. Approximately 25 kb of genomic DNA including the Om (2D) locus was cloned by tom tagging. Southern blot and cloning analyses of two alleles of the Om (2D) locus revealed that insertions of the tom element occurred at three sites within 359 bp; two tandemly arrayed toms sharing one long terminal repeat at the junction and an internally deleted tom were present 359 bp apart from each other in Om (2D) 63, while a single tom in reverse orientation was present within the 359 bp in Om (2D) 10a. Host DNA sequences at the three insertion sites were TATAT or AATAT, and ATAT was duplicated upon the tom insertion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Analysis of the Om(1d) Locus in Drosophila Ananassae   总被引:5,自引:3,他引:2       下载免费PDF全文
From the ca;px stock, which is the progenitor of Om mutants caused by insertions of the tom retrotransposon, 50 kb of genomic DNA including the Om(1D) locus was cloned by tom tagging and chromosome walking. Southern blot analyses of six Om(1D) mutants exposed one or two tom elements inserted at five nonrandom sites within an 18-kb distal segment of the restriction map; the phenotypic uniformity between these mutants was not affected by variations in the position, number or orientation of their inserts. Spontaneous revertants or more extreme derivatives of Om(1D) alleles were nonlinearly associated with losses or gains of tom inserts. Seven of eight radiation induced derivatives of Om(1D) mutants had one breakpoint of a chromosome rearrangement in polytene section 13A which includes the Om(1D) locus. Two Om(1D) derivatives, a spontaneous revertant and an induced extreme allele, were associated with overlapping deficiencies which define a region that is likely to contain the Om(1D) coding seguences proximal to the tom insertion sites. Incidental results confirm the previously indicated homology of the Om(1D) locus with the Bar locus of Drosophila melanogaster.  相似文献   

4.
5.
N. Juni  T. Awasaki  K. Yoshida    S. H. Hori 《Genetics》1996,143(3):1257-1270
Optic morphology (Om) mutations in Drosophila ananassae are a group of retrotransposon (tom)-induced gain-of-function mutations that map to at least 22 independent loci and exclusively affect the compound eye morphology. In marked contrast to other Om mutations, which are characterized by fewer-than-normal and disorganized ommatidia, the Om(1E) mutation exhibits a peculiar phenotype as enlarged eyes with regularly arrayed normal ommatidia. To characterize the Om(1E) mutation, we have carried out molecular analyses. A putative Om(1E) locus cloned by tom tagging and chromosome walking contained two transcribed regions in the vicinity of tom insertion sites of the Om(1E) mutant alleles, and one of these regions was shown to be the Om(1E) gene by P element-mediated transformation experiments with D. melanogaster. The Om(1E) gene encodes a novel protein having potential transmembrane domain(s). In situ hybridization analyses demonstrated that the Om(1E) gene is expressed ubiquitously in embryonic cells, imaginal discs, and the cortex of the central nervous system of third instar larvae, and specifically in lamina precursor cells. Artificially induced ubiquitous overexpression of Om(1E) affected morphogenesis of wing imaginal disc derivatives or large bristle formation. These findings suggest that the Om(1E) gene is involved in a variety of developmental processes.  相似文献   

6.
W. Stephan  S. J. Mitchell 《Genetics》1992,132(4):1039-1045
We have estimated DNA sequence variation within and between two populations of Drosophila ananassae, using six-cutter restriction site variation at vermilion (v) and furrowed (fw). These two gene regions are located close to the centromere on the left and right X chromosome arms, respectively. In the fw region, no DNA polymorphism was detected within each population. In the v region, average heterozygosity per nucleotide was very low in both populations (pi = 0.0005 in the Burma population, and 0.0009 in the India population). These estimates are significantly lower than those from loci in more distal gene regions. The distribution of DNA polymorphisms between both populations was also striking. At fw, three fixed differences between the Burma and India populations were detected (two restriction site differences and one insertion/deletion of approximately 2 kb). At v, each DNA polymorphism in high frequency in the total sample was nearly fixed in one or the other population, although none of them reached complete fixation. The observed pattern of reduced variation within populations and fixed differences between populations appears to correlate with recombination rate. We conclude that recent hitchhiking associated with directional selection is the best explanation for this pattern. The data indicate that different selective sweeps have occurred in the two populations. The possible role of genetic hitchhiking in rapid population differentiation in gene regions of restricted recombination is discussed.  相似文献   

7.
Optic morphology (Om) mutations in Drosophila ananassae map to at least 22 loci scattered throughout the genome. They are semidominant, neomorphic, nonpleiotropic, and are associated with the insertion of a retrotransposon, tom. The Om(1A) gene, which is cytogenetically linked to the cut locus, was cloned using a DNA fragment of the cut locus of Drosophila melanogaster as a probe. Three of the eight alleles of Om(1A) examined have insertion of the tom element within a putative cut region. The γ-ray-induced revertants of Om(1A) are accompanied with cut lethal mutations and rearrangements within the cut coding region. In the eye imaginal discs of the Om(1A) mutants, differentiation of photoreceptor clusters is suppressed, abnormal cell death occurs in the center and the cut protein is expressed ectopically. D. melanogaster flies transformed with a chimeric cut gene under the control of a heat-inducible promoter show excessive cell death in the region anterior to the morphogenetic furrow, suppressed differentiation to photoreceptor clusters and defect in the imaginal eye morphology when subjected to temperature elevation. These findings suggest that the tom element inserted within the Om(1A) region induces ectopic cut expression in the eye imaginal discs, thus resulting in the Om(1A) mutant phenotype.  相似文献   

8.
Chen Y  Marsh BJ  Stephan W 《Genetics》2000,155(3):1185-1194
We estimated DNA sequence variation in a 5.7-kb fragment of the furrowed (fw) gene region within and between four populations of Drosophila ananassae; fw is located in a chromosomal region of very low recombination. We analyzed gene flow between these four populations along a latitudinal transect on the Indian subcontinent: two populations from southern, subtropical areas (Hyderabad, India, and Sri Lanka) and two from more temperate zones in the north (Nepal and Burma). Furthermore, we compared the pattern of differentiation at fw with published data from Om(1D), a gene located in a region of normal recombination. While differentiation at Om(1D) shows an isolation-by-distance effect, at fw the pattern of differentiation is quite different such that the frequencies of single nucleotide polymorphisms are homogenized over extended geographic regions (i.e., among the two populations of the northern species range from Burma and Nepal as well as among the two southern populations from India and Sri Lanka), but strongly differentiated between the northern and southern populations. To examine these differences in the patterns of variation and differentiation between the Om(1D) and fw gene regions, we determine the critical values of our previously proposed test of the background selection hypothesis (henceforth called F(ST) test). Using these results, we show that the pattern of differentiation at fw may be inconsistent with the background selection model. The data depart from this model in a direction that is compatible with the occurrence of recent selective sweeps in the northern as well as southern populations.  相似文献   

9.
The frequency of recessive lethals in the 2nd chromosome was examined in two mutator stocks of Drosophila ananassae, ca and ca; px. They are characterized respectively by possessing an extrachromosomal clastogenic mutator in males, and by the retrotransposon "tom", which induces Om mutability only in females. The frequencies of recessive lethal mutations in the 2nd chromosome among progenies from males and females of the ca; px stock are 0.35 and 0.34 percent, respectively. Similarity of these frequencies indicates that tom does not induce recessive lethals in females. In contrast to the ca; px stock, the frequency of recessive lethals in males of the ca mutator stock was estimated to be 1.54 percent for the 2nd chromosome. No visible mutants except Minutes were recovered. Some recessive lethals derived from ca stock males were associated with chromosomal rearrangements. Being consistent with its high rate of Minute mutation it was demonstrated that the ca clastogenic mutator also induced recessive lethals.  相似文献   

10.
11.
The Om(2D)63 mutants were mutagenized by gamma-ray irradiation and DEB feeding. A total of nine revertants were recovered and characterized; eight revertants were homozygous-lethal expressing no appreciable abnormality in cuticular pattern and central nervous system, and all failed to complement the lethality with each other. Two of the eight expressed embryonic lethality and were associated with cytologically detectable deletions including the putative Om(2D) locus, while four were associated with rearrangements in a region distal to the insertion sites of the tom elements. No rearrangement was detected in the remaining two by Southern blot analysis. One of the nine revertants was homozygous-viable with wild-type eyes and was associated with a reciprocal translocation with the break points at 48B in 2R (Om(2D) locus) and 96A in 3R. Based on these data, it is concluded that interaction between the region comprised of a single complementation group of the recessive lethal and the inserted tom elements seems to be responsible for the Om(2D) mutant phenotype. In addition, two induced dominant enhancers specific to Om(2D)63 were identified; both mapped on chromosome 2.  相似文献   

12.
Semidominant, optic morphology (Om) mutants in Drosophila ananassae have been genetically mapped to at least 25 loci throughout the genome (Hinton, 1984; 1988). Among them, four X-linked Om mutants were proved to be associated with the insertion of a transposable element, tom (Shrimpton et al., 1986; Tanda et al., 1988). In the present study, cytological mapping of autosomal Om mutants was carried out by in situ hybridization to polytene chromosomes using a cloned tom element as a probe. The cytological site for each autosomal Om mutant has been determined to a single band of the salivary gland chromosomes.  相似文献   

13.
14.
The e65 pi; bri ru stock of Drosophila ananassae produced an extremely high rate of recombination in males when made heterozygous with any one of the wild type stocks. We analyzed and characterized the genetic factors which caused this phenomenon. We show that the second chromosome of the e65 pi; bri ru stock carries an enhancer of male recombination. The enhancer, En(2)-ep, is located between Om(2C) and Arc. The enhancement of meiotic recombination both in males and females was also observed at the specific region between Om(2C) and Arc on 2L. The magnitude of increased recombination was 30-40 fold in males and 13-30 fold in females. The relation between the hotspot of recombination in both sexes and the enhancer of male recombination is discussed.  相似文献   

15.
C. W. Hinton 《Genetics》1988,120(4):1035-1042
Optic morphology (Om) mutants associated with insertions of the tom transposable element at each of three tested loci are neomorphs as defined by the phenotypic equivalence of +/+/Om with +/Om and of +/Om/Om with Om/Om. Mutants behaving as suppressors of Om mutants and mapping to at least six loci are recovered from the same source and in similar frequency as Om mutants. The semidominant and nonpleiotropic suppressors at four of the six loci display defective eye phenes themselves, and the phenotypically normal mutants at a fifth locus are suspected alleles of a gene represented by recessive furrowed eye mutants. These and other properties imply that the suppressors, like suppressible Om mutants, are neomorphic due to insertion of the tom element into a hypothetical sequence they share with other members of a set of genes involved in development of the eye. Concurrently premature expression of both the suppressor and suppressed mutants would allow interaction of their products just as in normal development.  相似文献   

16.
Yang HP  Tanikawa AY  Kondrashov AS 《Genetics》2001,157(3):1285-1292
To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.  相似文献   

17.
New repeat sequences were found in the Drosophila ananassae genome sequence. They accounted for approximately 1.2% of the D. ananassae genome and were estimated to be more abundant in genomes of its closely related species belonging to the Drosophila bipectinata complex, whereas it was entirely absent in the Drosophila melanogaster genome. They were interspersed throughout euchromatic regions of the genome, usually as short tandem arrays of unit sequences, which were mostly 175-200 bp long with two distinct peaks at 180 and 189 bp in the length distribution. The nucleotide differences among unit sequences within the same array (locus) were much smaller than those between separate loci, suggesting within-locus concerted evolution. The phylogenetic tree of the repeat sequences from different loci showed that divergences between sequences from different chromosome arms occurred only at earlier stages of evolution, while those within the same chromosome arm occurred thereafter, resulting in the increase in copy number. We found RNA polymerase III promoter sequences (A box and B box), which play a critical role in retroposition of short interspersed elements. We also found conserved stem-loop structures, which are possibly associated with certain DNA rearrangements responsible for the increase in copy number within a chromosome arm. Such an atypical combination of characteristics (i.e., wide dispersal and tandem repetition) may have been generated by these different transposition mechanisms during the course of evolution.  相似文献   

18.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci.  相似文献   

19.
We constructed and characterized arrayed bacterial artificial chromosome (BAC) libraries of five Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. auraria, and D. ananassae), which are genetically well characterized in the studies of meiosis, evolution, population genetics, and developmental biology. The BAC libraries comprise 8,000 to 12,500 clones for each species, estimated to cover the most of the genomes. We sequenced both ends of most of these BAC clones with a success rate of 91%. Of these, 53,701 clones consisting of non-repetitive BAC end sequences (BESs) were mapped with reference of the public D. melanogaster genome sequences. The BES mapping estimated that the BAC libraries of D. auraria and D. ananassae covered 47% and 57% of the D. melanogaster genome, respectively, and those of D. melanogaster, D. sechellia, and D. simulans covered 94-97%. The low coverage by BESs of D. auraria and D. ananassae may be due to the high sequence divergence with D. melanogaster. From the comparative BES mapping, 111 possible breakpoints of chromosomal rearrangements were identified in these four species. The breakpoints of the major chromosome rearrangement between D. simulans and D. melanogaster on the third chromosome were determined within 20 kb in 84E and 30 kb in 93E/F. Corresponding breakpoints were also identified in D. sechellia. The BAC clones described here will be an important addition to the Drosophila genomic resources.  相似文献   

20.
Drosophila ananassae is a cosmopolitan species with a geographic range throughout most of the tropical and subtropical regions of the world. Previous studies of DNA sequence polymorphism in three genes has shown evidence of selection affecting broad expanses of the genome in regions with low rates of recombination in geographically local populations in and around India. The studies suggest that extensive physical and genetic maps based on molecular markers, and detailed studies of population structure may provide insight into the degree to which natural selection affects DNA sequence polymorphism across broad regions of chromosomes. We have isolated 85 dinucleotide repeat microsatellite sequences and developed assay conditions for genotyping using PCR. The dinucleotide repeats we isolated are shorter, on average, than those isolated in many other Drosophila species. Levels of genetic variation are high, comparable to Drosophila melanogaster. The levels of variation indicate the effective population size of an Indonesian population of D. ananassae is 58,692 (infinite allele model) and 217,284 (stepwise mutation model), similar to estimates of effective population size for D. melanogaster calculated using dinucleotide repeat microsatellites. The data also show that the Indonesian population is in a rapid expansion phase. Cross-species amplification of the microsatellites in 11 species from the Ananassae, Elegans, Eugracilis and Ficusphila subgroups indicates that the loci may be useful for studies of the sister species, D. pallidosa, but will have limited use for more distantly related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号