首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BOK/MTD was discovered as a protein that binds to the anti-apoptotic Bcl-2 family member MCL-1 and shares extensive amino-acid sequence similarity to BAX and BAK, which are essential for the effector phase of apoptosis. Therefore, and on the basis of its reported expression pattern, BOK is thought to function in a BAX/BAK-like pro-apoptotic manner in female reproductive tissues. In order to determine the function of BOK, we examined its expression in diverse tissues and investigated the consequences of its loss in Bok(-/-) mice. We confirmed that Bok mRNA is prominently expressed in the ovaries and uterus, but also observed that it is present at readily detectable levels in several other tissues such as the brain and myeloid cells. Bok(-/-) mice were produced at the expected Mendelian ratio, appeared outwardly normal and proved fertile. Histological examination revealed that major organs in Bok(-/-) mice displayed no morphological aberrations. Although several human cancers have somatically acquired copy number loss of the Bok gene and BOK is expressed in B lymphoid cells, we found that its deficiency did not accelerate lymphoma development in Eμ-Myc transgenic mice. Collectively, these results indicate that Bok may have a role that largely overlaps with that of other members of the Bcl-2 family, or may have a function restricted to specific stress stimuli and/or tissues.  相似文献   

2.
3.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

4.
5.
The Bcl-2 family of proteins plays a central regulatory role in apoptosis. We have identified a novel, widely expressed Bcl-2 member which we have named Bcl-rambo. Bcl-rambo shows overall structural homology to the anti-apoptotic Bcl-2 members containing conserved Bcl-2 homology (BH) motifs 1, 2, 3, and 4. Unlike Bcl-2, however, the C-terminal membrane anchor region is preceded by a unique 250 amino acid insertion containing two tandem repeats. No interaction of Bcl-rambo with either anti-apoptotic (Bcl-2, Bcl-x(L), Bcl-w, A1, MCL-1, E1B-19K, and BHRF1) or pro-apoptotic (Bax, Bak, Bik, Bid, Bim, and Bad) members of the Bcl-2 family was observed. In mammalian cells, Bcl-rambo was localized to mitochondria, and its overexpression induces apoptosis that is specifically blocked by the caspase inhibitors, IAPs, whereas inhibitors controlling upstream events of either the 'death receptor' (FLIP, FADD-DN) or the 'mitochondrial' pro-apoptotic pathway (Bcl-x(L)) had no effect. Surprisingly, the Bcl-rambo cell death activity was induced by its membrane-anchored C-terminal domain and not by the Bcl-2 homology region. Thus, Bcl-rambo constitutes a novel type of pro-apoptotic Bcl-2 member that triggers cell death independently of its BH motifs.  相似文献   

6.
7.
Regulation of the cyclin D3 promoter by E2F1   总被引:3,自引:0,他引:3  
We have previously demonstrated that ectopic expression of E2F1 is sufficient to drive quiescent cells into S phase and that E2F1 expression can contribute to oncogenic transformation. Key target genes in this process include master regulators of the cell cycle, such as cyclin E, which regulates G(1) progression, and cyclin A, which is required for the initiation of DNA synthesis. In the present work, we present novel evidence that a second G(1) cyclin, cyclin D3, is also potently activated by E2F1. First, an estrogen receptor-E2F1 fusion protein (ER-E2F1) potently activates the endogenous cyclin D3 mRNA upon treatment with 4-hydroxytamoxifen, which induces nuclear accumulation of the otherwise cytosolic fusion protein. Furthermore, trans-activation of cyclin D3 by ER-E2F1 occurs even in the presence of the protein synthesis inhibitor cycloheximide and thus appears direct. Second, all of the growth-stimulatory members of the E2F family (E2F1, -2, and -3A) potently activate a cyclin D3 promoter reporter, whereas growth-restraining members of the family (E2F4, -5, and -6) have little effect. Third, recombinant E2F1 binds with high affinity to the cyclin D3 promoter in vitro. Fourth, chromatin immunoprecipitation assays demonstrate that endogenous E2F1 is associated with the cyclin D3 promoter in vivo. Finally, mapping experiments localize the essential E2F regulatory element of the cyclin D3 promoter to a noncanonical E2F site in the promoter between nucleotides -143 and -135 relative to the initiating methionine codon. We conclude that in addition to cyclins E and A, E2F family members can also activate one member of the D-type cyclins, further contributing to the ability of the stimulatory E2F family members to drive cellular proliferation.  相似文献   

8.
9.
Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a mitochondrial pro-apoptotic protein that has a single Bcl-2 homology 3 (BH3) domain and a COOH-terminal transmembrane (TM) domain. Al-though it belongs to the Bcl-2 family and can hetero-dimerize with Bcl-2, its pro-apoptotic activity is distinct from those of other members of the Bcl-2 family. For example, cell death mediated by BNIP3 is independent of caspases and shows several characteristics of necrosis. Furthermore, the TM domain, but not the BH3 domain, is required for dimerization, mitochondrial targeting and pro-apoptotic activity. BNIP3 plays an important role in hypoxia-induced death of normal and malignant cells. Its expression is markedly increased in the hypoxic regions of some solid tumors and appears to be regulated by hypoxia-inducible fac-tor (HIF), which binds to a site on the BNIP3 promoter. Silencing, followed by methylation, of the BNIP3 gene occurs in a significant proportion of can-cer cases, especially in pancreatic cancers. BNIP3 also has a role in the death of cardiac myocytes in ischemia. Further studies of BNIP3 should provide insight into hypoxic cell death and may contribute to im-proved treatment of cancers and cardiovascular diseases.  相似文献   

10.
Lactoferrin (Lf) has been shown to control the proliferation of a variety of mammalian cells. Recently, we reported that human Lf induces apoptosis via a c-Jun N-terminal kinases (JNK)-associated Bcl-2 pathway that stimulates programmed cell death. In order to gain insight into the mechanism underlying Lf-triggered apoptotic features, we attempted to determine the mechanisms whereby the Lf-induced Bcl-2 family proteins exert their pro- or anti-apoptotic effects in Jurkat leukemia T lymphocytes. Treatment of the cells with high concentrations of Lf resulted in a significant reduction in in vitro growth and cell viability. As the levels of Lf increased, greater quantities of CDK6 and hyper-phosphorylated retinoblastoma protein were produced, resulting in the induction of E2F1-dependent apoptosis. Simultaneously, PARP and caspases were efficiently cleaved during Lf-induced apoptosis. The E2F1-induced apoptotic process occurred preferentially in p53-deficient Jurkat leukemia cells. Therefore, we attempted to determine whether E2F1-regulated Bcl-2 family proteins involved in the apoptotic process were relevant to Lf-induced apoptosis. We found that Lf increased the interaction of Bcl-2 with the pro-apoptotic protein Bad, whereas the total protein levels did not change significantly. Our results, collectively, suggest that Lf exploits the control mechanism of E2F1-regulated target genes or Bcl-2 family gene networks involved in the apoptotic process in Jurkat human leukemia T lymphocytes.  相似文献   

11.
12.
13.
14.
15.
Evasion of apoptosis is recognized as a characteristic of malignant growth. Anti-apoptotic B-cell lymphoma-2 (Bcl-2) family members have therefore emerged as potential therapeutic targets due to their critical role in proliferating cancer cells. Here, we present the crystal structure of Bfl-1, the last anti-apoptotic Bcl-2 family member to be structurally characterized, in complex with a peptide corresponding to the BH3 region of the pro-apoptotic protein Bim. The structure reveals distinct features at the peptide-binding site, likely to define the binding specificity for pro-apoptotic proteins. Superposition of the Bfl-1:Bim complex with that of Mcl-1:Bim reveals a significant local plasticity of hydrophobic interactions contributed by the Bim peptide, likely to be the basis for the multi specificity of Bim for anti-apoptotic proteins.  相似文献   

16.
17.
18.
Diva is a novel proapoptotic member of the Bcl-2 protein family which binds apoptosis activating factor-1 (APAF-1). Diva is identical with Boo which was identified as a novel antiapoptotic Bcl-2 family protein. Here, we report that Diva promotes the cell cycle exit of human glioma cells in response to serum deprivation and inhibits apoptosis of these cells induced by CD95 ligand or chemotherapeutic drugs. In glioma cells, Diva interferes with apoptotic signaling downstream of cytochrome c release, but upstream of caspase activation, consistent with an inhibitory effect on the mitochondrial amplification step involving the apoptosome and APAF-1.  相似文献   

19.
The Bcl-2 (Bcl is B-cell lymphocytic-leukaemia proto-oncogene) family comprises two groups of proteins with distinct functional biology in cell-fate signalling. Bcl-2 protein was the first member to be discovered and associated with drug resistance in human lymphomas. Since then a host of other proteins such as Bcl-xL, Bcl-2A1 and Mcl-1 with similar anti-apoptotic functions have been identified. In contrast, the pro-apoptotic Bcl-2 proteins contain prototypic effector proteins such as Bax and Bak, and the BH3 (Bcl-2 homology)-only proteins comprising Bak, Bid, Bim, Puma and Noxa. A complex interplay between the association of pro-apoptotic and anti-apoptotic proteins with each other determines the sensitivity of cancer cells to drug-induced apoptosis. The canonical functional of Bcl-2 in terms of apoptosis inhibition is its ability to prevent mitochondrial permeabilization via inhibiting the translocation and oligomerization of pro-apoptotic proteins such as Bax; however, more recent evidence points to a novel mechanism of the anti-apoptotic activity of Bcl-2. Overexpression of Bcl-2 increases mitochondrial oxygen consumption and in doing so generates a slight pro-oxidant intracellular milieu, which promotes genomic instability and blocks death signalling. However, in the wake of overt oxidative stress, Bcl-2 regulates cellular redox status thereby preventing excessive build-up of ROS (reactive oxygen species), which is detrimental to cells and tissues. Taken together, the canonical and non-canonical activities of Bcl-2 imply a critical involvement of this protein in the processes of tumour initiation and progression. In the present paper we review these functionally distinct outcomes of Bcl-2 expression with implications for the chemotherapeutic management of cancers.  相似文献   

20.
Although many E2F target genes have been identified recently, very little is known about how any single E2F site controls the expression of an E2F target gene in vivo. To test the requirement for a single E2F site in vivo and to learn how E2F-mediated repression is regulated during development and tumorigenesis, we have constructed a novel series of wild-type and mutant Rb promoter-LacZ transgenic reporter lines that allow us to visualize the activity of a crucial E2F target in vivo, the retinoblastoma tumor suppressor gene (Rb). Two mutant Rb promoter-LacZ constructs were used to evaluate the importance of a single E2F site or a nearby activator (Sp1/Ets) site that is found mutated in low-penetrance retinoblastomas. The activity of the wild-type Rb promoter is dynamic, varying spatially and temporally within the developing nervous system. While loss of the activator site silences the Rb promoter, loss of the E2F site stimulates its activity in the neocortex, retina, and trigeminal ganglion. Surprisingly, E2F-mediated repression of Rb does not act globally or in a static manner but, instead, is a highly dynamic process in vivo. Using neocortical extracts, we detected GA-binding protein alpha (GABPalpha, an Ets family member) bound to the activator site and both E2F1 and E2F4 bound to the repressor site of the Rb promoter in vitro. Additionally, we detected binding of both E2F1 and E2F4 to the Rb promoter in vivo using chromatin immunoprecipitation analysis on embryonic day 13.5 brain. Unexpectedly, we detect no evidence for Rb promoter autoregulation in neuroendocrine tumors from Rb+/-; RbP-LacZ mice that undergo loss of heterozygosity at the Rb locus, in contrast to the situation in human retinoblastomas where high RB mRNA levels are found. In summary, this study provides the first demonstration that loss of an E2F site is critical for target gene repression in vivo and underscores the complexity of the Rb and E2F family network in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号