首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the ‘dihydroxyacetone-fermentation’ was carried out in a steady state by the cells of Br. fuscum, it was suggested that the consumption rate of glucose in the medium might be regulated at the initial stages of glucose degradation such as; (a) glucose isomerization, (b) glucose dehydrogenation, and (c) glucose phosphorylation. Of these three enzymatic reactions, the isomerization and the dehydrogenation were proved to be unable to occur or negligible in vivo. So, in consideration of the pool sizes of Mg+ +, Pi, H+, glucose, G6P*, ATP, ADP, etc., the intracellular glucokinase** activity was calculated. Results indicate that glucokinase reaction may be the limiting factor for direct glucose metabolism in Br. fuscum.  相似文献   

2.
  相似文献   

3.
Strategies to amplify whole-body glucose disposal are key therapies to treat type 2 diabetes. Mice that over-express glucose transporter 4 (Glut4) in skeletal muscle, heart, and adipose tissue (G4Tg) exhibit increased fasting glucose disposal and thus lowered blood glucose. Intriguingly, G4Tg mice also exhibit improved insulin-stimulated suppression of endogenous glucose production even though Glut4 is not present in the liver. It is unclear, however, if hepatic gluco-regulation is altered in G4Tg mice in the basal, non-insulin-stimulated state. The current studies were performed to examine fasting hepatic glucose metabolism in G4Tg mice and to determine whether gluco-regulatory adaptations exist in the non-insulin-stimulated condition. To test this question, phloridzin-glucose clamps were used to match blood glucose and pancreatic hormone levels while tracer dilution techniques were used to measure glucose flux. These techniques were performed in chronically-catheterized, conscious, and un-stressed 5h-fasted G4Tg and wild-type (WT) littermates. Results show reduced blood glucose, hepatic glycogen content, and hepatic glucokinase (GK) activity/expression as well as higher endogenous glucose production, glucose disposal, arterial glucagon, and hepatic glucose-6-phosphatase (G6Pase) activity/expression in G4Tg mice versus WT controls. Clamping blood glucose for 90 min at ∼115 mg/dLin G4Tg and WT mice normalized nearly all variables. Notably, however, net hepatic glycogen synthetic rates were disproportionately elevated compared to changes in blood glucose. In conclusion, these studies demonstrate that basal improvements in glucose tolerance due to increased uptake in extra-hepatic sites provoke important gluco-regulatory adaptations in the liver. Although changes in blood glucose underlie the majority of these adaptations, net hepatic glycogen synthesis is sensitized. These data emphasize that anti-diabetic therapies that target skeletal muscle, heart, and/or adipose tissue likely positively impact the liver.  相似文献   

4.
Little is known of the selectivity of the blood-brain barrier at birth. Hexoses are transported through the barrier by a facilitating mechanism. To study the capacity of this mechanism to distinguish between analogs of D-glucose, we compared the transport of fluorodeoxyglucose, deoxyglucose, glucose, methylglucose, mannose, galactose, mannitol, and iodoantipyrine across the cerebral capillary endothelium in newborn Wistar rats. Cerebral blood flow, glucose consumption, and the blood-brain permeabilities of the hexoses were 25-50% of the adult values but the ratios between the permeabilities of the individual hexoses were similar to the ratios observed in adult rats. The mannitol clearance into brain was considerably higher than in adult rats (about 10-fold), indicating a higher endothelial permeability to small polar nonelectrolytes. The brain water content was higher in newborn than in adult rats and was associated with a higher steady-state distribution of labeled methylglucose between brain and blood. Hexose concentrations were determined relative to whole blood because the apparent erythrocyte membrane permeability to glucose was as high as in humans and thus considerably higher than in adult rats. The half-saturation concentration of glucose transport across the blood-brain barrier was considerably higher than in adult rats, about three-fold, suggesting that net blood-brain glucose transfer is less sensitive to blood glucose fluctuation in newborn than in adult rats.  相似文献   

5.
6.
7.
8.
Glucose utilization in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
  相似文献   

9.
10.
No correlation was found between the concentration of glucose in blood plasma and the rate of hepatic glucose production in newborn pups aged 2½-112 hours. During the first few hours of life the hypoglycaemic response to insulin was small or absent. Later the response seemed exaggerated mainly owing to a slow recovery to normoglycaemia. This latter observation can be entirely accounted for by the lack of a feedback mechanism between the plasma concentration and the hepatic rate of production of glucose.  相似文献   

11.
A set of Saccharomyces cerevisiae strains with variable expression of only the high-affinity Hxt7 glucose transporter was constructed by partial deletion of the HXT7 promoter in vitro and integration of the gene at various copy numbers into the genome of an hxt1-7 gal2 deletion strain. The glucose transport capacity increased in strains with higher levels of HXT7 expression. The consequences for various physiological properties of varying the glucose transport capacity were examined. The control coefficient of glucose transport with respect to growth rate was 0.54. At high extracellular glucose concentrations, both invertase activity and the rate of oxidative glucose metabolism increased manyfold with decreasing glucose transport capacity, which is indicative of release from glucose repression. These results suggest that the intracellular glucose concentration produces the signal for glucose repression.  相似文献   

12.
When glucose was added to carbohydrate-starved cells of Zygorhyncus,moelleri the rate of oxygen uptake did not immediately riseto a constant value, but there was a lag period of 2 or 3 hoursbefore it reached its maximum level. The length of this lagperiod increased from a few minutes for short periods of starvationto 2–3 hours after 12 hours in a carbohydrate-free medium.Factors believed to affect cellular permeability (a cationicdetergent, adjustments of the pH, and of the potassium/calciumratio) reduced the length of the lag period by not more than40 per cent. of the original value without affecting the finalrate of oxygen uptake. Investigation of the entry of glucoseinto the cells showed that the rate of oxygen uptake was notlimited by the concentration of intra-cellular glucose for morethat about 11 per cent. of the lag period in starved cells.The reasons for this difference in the percentage of the lagperiod apparently due to a permeability barrier are tentativelydiscussed in connexion with the route by which glucose entersthe cells.  相似文献   

13.
Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.  相似文献   

14.
15.
16.
Neurons have a constantly high glucose demand, and unlike muscle cells they cannot accommodate episodic glucose uptake under the influence of insulin. Neuronal glucose uptake depends on the extracellular concentration of glucose, and cellular damage can ensue after persistent episodes of hyperglycaemia--a phenomenon referred to as glucose neurotoxicity. This article reviews the pathophysiological manifestation of raised glucose in neurons and how this can explain the major components of diabetic neuropathy.  相似文献   

17.
烷基胺玻璃固定化葡萄糖氧化酶测定血糖   总被引:1,自引:0,他引:1  
定量分析血糖在门诊和许多疾病如糖尿病,甲状腺机能抗进,粘液腺癌.垂体机能减退。肾上腺机能减退和妨碍葡萄糖吸收等疾病的诊断有重要意义。测定葡萄糖有很多方法,采用葡萄糖氧化酶比色法,由于操作简便.专一性强,灵敏度高,因此比较适合用于常规测定⑴。但是葡萄糖氧化酶的价格高。把酶固定在不溶于水的支持物上,酶可以重复使用,因此可以降低成本。虽然葡萄糖氧化酶固定在烷基胺玻璃上。在连续流动系统中测定葡萄糖,但烷基胺固定的酶还没有用来测定血糖。一般来说.烷基胺玻璃抗微生物的腐蚀。有很广的pH适应性和不同溶剂如乙醇和丙酮的稳定性。本文报道利用烷基胺玻璃珠固定葡萄糖氧化酶常规分析血糖。  相似文献   

18.
A partial differential Progressive Tubular Reabsorption (PTR) model, describing renal tubular glucose reabsorption and urinary glucose excretion following a glucose load perturbation, is proposed and fitted to experimental data from five subjects. For each subject the Glomerular Filtration Rate was estimated and both blood and urine glucose were sampled following an Intra-Venous glucose bolus. The PTR model was compared with a model representing the conventional Renal Threshold Hypothesis (RTH). A delay bladder compartment was introduced in both formulations. For the RTH model, the average threshold for glycosuria varied between 9.90±4.50 mmol/L and 10.63±3.64 mmol/L (mean ± Standard Deviation) under different hypotheses; the corresponding average maximal transport rates varied between 0.48±0.45 mmol/min (86.29±81.22 mg/min) and 0.50±0.42 mmol/min (90.62±76.15 mg/min). For the PTR Model, the average maximal transports rates varied between 0.61±0.52 mmol/min (109.57±93.77 mg/min) and 0.83±0.95 mmol/min (150.13±171.85 mg/min). The time spent by glucose inside the tubules before entering the bladder compartment varied between 1.66±0.73 min and 2.45±1.01 min.The PTR model proved much better than RTH at fitting observations, by correctly reproducing the delay of variations of glycosuria with respect to the driving glycemia, and by predicting non-zero urinary glucose elimination at low glycemias. This model is useful when studying both transients and steady-state glucose elimination as well as in assessing drug-related changes in renal glucose excretion.  相似文献   

19.
Photoinhibition of Glucose Uptake in Chlorella   总被引:1,自引:0,他引:1  
In colorless mutant cells of Chlorella vulgaris (M125), endogenousrespiration in the dark was not affected by 30-min preilluminationwith white light (9,000 mW?m–2), while exogenous respirationof glucose or fructose was inhibited significantly by the sametreatment in air, but not under N2. This light effect on exogenousrespiration was accompanied by an inhibition of hexose uptake. When autotrophically grown wild-type cells of Chlorella vulgaris(211-11h) were incubated in glucose medium with DCMU, lightalso greatly inhibited glucose uptake and growth. Blue lightwas very effective, while red light had only a slight effect.This photoinhibitory effect was also observed in algal cellsthat had been grown in a glucose-containing medium in the dark. Using SDS-gel electrophoresis, a new protein peak with a molecularweight of 35–40 kDa was detected in plasma membrane-richcell wall fractions when Chlorella vulgaris (211-11h) cellswere transferred to a glucose-containing medium. This peak disappearedafter the algal cells were returned to the glucose-free medium.These findings suggest that this protein includes the hexose-carrierprotein. Blue light significantly inhibited the formation ofthis protein during incubation in a glucose-containing medium. 1 Present address: Laboratory of Chemistry, Faculty of PharmaceuticalSciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan. (Received July 31, 1986; Accepted March 12, 1987)  相似文献   

20.
Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号