首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife ( Lythrum salicaria ) and reed canary grass ( Phalaris arundinacea ), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon–Wiener index (H') and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H', D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities.  相似文献   

2.
Invasive species pose a serious threat to native plant communities and are an important contributor to loss of biodiversity. In the case of Phalaris arundinacea, L. (Poaceae), reed canary grass, a cool-season, long-lived perennial plant native to Eurasia and North America, nonnative agronomically important genotypes were introduced to North America for numerous uses such as forage and soil stabilization. Following repeated introductions, reed canary grass became an aggressive invader that takes over natural wet prairies, stream-banks and wetlands. Reed canary grass can outcompete native plant species, resulting in monospecific stands with concomitant loss of plant and insect diversity and ultimately to alteration in ecosystem function. Abiotic factors such as disturbance, changes in hydrological regime, and particularly nutrient runoff to wetlands can enhance reed canary grass establishment and vegetative spread. In addition, the species' capacity for early season growth, rapid vegetative spread, high stem elongation potential, wide physiological tolerance, and high architectural plasticity make the species highly aggressive under a wide range of ecological conditions. The change in life-history and environmental conditions responsible for the enhanced aggressiveness observed between native and invasive genotypes are not yet understood. Hence, reed canary grass provides an ideal study system to test a number of ecological and genetic hypotheses to explain why some plant species become extremely aggressive when transported into a new geographical area. To date, genetic studies have found that invasive populations have high genetic diversity and that genotypes differ in their phenotypic plasticity and response to ecological conditions, which may contribute to their invasion success. Finally comparative studies currently underway on European native and American invasive genotypes of reed canary grass should shed light on the mechanisms responsible for reed canary grass's aggressiveness and should provide an experimental protocol to test ecological and genetic hypotheses about what makes a species invasive.  相似文献   

3.
Aim Biological invasion is a major conservation problem that is of interest to ecological science. Understanding mechanisms of invasion is a high priority, heightened by the management imperative of acting quickly after species introduction. While information about invading species’ ecology is often unavailable, species distribution data can be collected near the onset of invasion. By examining distribution patterns of exotic and native plant species at multiple spatial scales, we aim to identify the scale (of those studied) that accounts for most variability in exotic species abundance, and infer likely drivers of invasion. Location River Murray wetlands, south‐eastern Australia. Methods A nested, crossed survey design was used to determine the extent of variation in wetland plant abundance, grazing intensity and water depth at four spatial scales (reaches, wetland clumps, wetlands, wetland sections), and among three Depth‐strata. We examined responses of exotic and native species groups (grouped into terrestrial and amphibious taxa), native weeds and 10 individual species using hierarchical ANOVA. Results As a group dominated by terrestrial taxa, exotic species cover varied at reach‐, wetland‐ and section‐scales. This likely reflects differences in abiotic characteristics and propagule pressure at these scales. Groups based on native species did not vary at any scale examined. Cover of 10 species mostly varied among and within wetlands (patterns unrelated to species’ origin or functional group), but species’ responses differed, despite individual plants being similar in size. While flora mostly varied among wetlands, exotic cover varied most among reaches (26%), which was attributed to hydrological modification and human activities. Main conclusions Multi‐scale surveys can rapidly identify factors likely to affect species’ distributions and can indicate where future research should be directed. By highlighting disproportionate variation in exotic cover among reaches, this study suggests that flow regulation and human‐mediated dispersal facilitate exotic plant invasion in River Murray wetlands.  相似文献   

4.
Recognition of wetland ecosystem services has led to substantial investment in wetland restoration in recent decades. Wetland restorations can be designed to meet numerous goals, among which reestablishing a diverse native wetland plant community is a common aim. In agricultural areas, where previously drained wetland basins can fill with eroded sediment from the surrounding landscape, restoration often includes excavation to expose buried seed banks. The extent to which excavation improves the diversity of wetland plant communities is unclear, particularly in terms of longer‐term outcomes. We examined plant species diversity and community composition in 24 restored agricultural wetlands across west‐central Minnesota, U.S.A. In all study wetlands, hydrology was restored by removing subsurface drainage and plugging drainage ditches, thus reestablishing groundwater connectivity and hydroperiod (“business as usual” treatment). In half of the wetlands, accumulated sediment was removed from the basin and redeposited on the surrounding landscape (“excavated” treatment). Initially, sediment removal significantly decreased invasive species cover, particularly of hybrid cattail (Typha × glauca) and reed canary grass (Phalaris arundinacea), and increased community diversity and evenness. Over time, the effects of sediment removal diminished, and eventually disappeared by approximately 6 years after restoration. While our results demonstrate that sediment removal improves initial restoration outcomes for plant communities, longer‐term benefits require sustained management, such as invasive species control or resetting of basins through additional excavation.  相似文献   

5.
The effects of invasive plants on plants native to areas that are being invaded can be quite variable, depending on the species of the invasive plant involved as well as the physical characteristics of the location being invaded. My study focuses on the effects of Phragmites australis Linnaeus (common reed) and Lythrum salicaria L. (purple loosestrife) on the same native plant community. Uninvaded plots dominated by native plants Typha angustifolia L. (narrowleaf cattail) and Typha latifolia L. (broadleaf cattail) served as the control. I surveyed percent cover of species during early summer and midsummer for 3 years in six Hudson River freshwater tidal wetlands (sites). Differences in species richness, composition and abundance were small, but significant among invaded and uninvaded plots and among sites. However, these differences remained significant when data for dominant species (invasive and native) were removed. Differences in native plant species abundance were attributed to invasive plant species-specific characteristics and differences in species richness and composition were attributed to physical location (zonation) in these freshwater tidal marshes. “Invasive” status of a dominant plant species was less important in invasive plant–native plant interactions than species-specific characteristics and zonation. Further research into the effects of site and land-use on invasive plant impacts is recommended.  相似文献   

6.
Climate change will likely affect flooding regimes, which have a large influence on the functioning of freshwater riparian wetlands. Low water levels predicted for several fluvial systems make wetlands especially vulnerable to the spread of invaders, such as the common reed (Phragmites australis), one of the most invasive species in North America. We developed a model to map the distribution of potential germination grounds of the common reed in freshwater wetlands of the St. Lawrence River (Québec, Canada) under current climate conditions and used this model to predict their future distribution under two climate change scenarios simulated for 2050. We gathered historical and recent (remote sensing) data on the distribution of common reed stands for model calibration and validation purposes, then determined the parameters controlling the species establishment by seed. A two‐dimensional model and the identified parameters were used to simulate the current (2010) and future (2050) distribution of germination grounds. Common reed stands are not widespread along the St. Lawrence River (212 ha), but our model suggests that current climate conditions are already conducive to considerable further expansion (>16,000 ha). Climate change may also exacerbate the expansion, particularly if river water levels drop, which will expose large bare areas propitious to seed germination. This phenomenon may be particularly important in one sector of the river, where existing common reed stands could increase their areas by a factor of 100, potentially creating the most extensive reedbed complex in North America. After colonizing salt and brackishwater marshes, the common reed could considerably expand into the freshwater marshes of North America which cover several million hectares. The effects of common reed expansion on biodiversity are difficult to predict, but likely to be highly deleterious given the competitiveness of the invader and the biological richness of freshwater wetlands.  相似文献   

7.
Whether an exotic species becomes integrated into a community or aggressively takes it over depends upon many interacting factors. Using contextual analyses, we combined genetic data about an invasive plant with information about the neighboring species, the community, and the environment to determine what factors enable a genotype or species to invade. We transplanted 50 individuals of each of three clones of the invasive grass Phalaris arundinacea, reed canary grass, into 150 random locations within a Vermont pasture. For each individual, we recorded clonal identity, neighbor identity, community indices (species richness and species diversity), and an environmental variable (soil moisture). The response variables were survivorship, above-ground biomass, below-ground biomass and the ratio of above- to below-ground biomass. Clonal identity affected both survivorship and below-ground biomass. The fastest tillering clone had poor survivorship but survivors produced a large amount of below-ground biomass, making this clone more likely to successfully overwinter. Neighbor species affected above- and below-ground biomass. Reed canary grass produced more above- and below-ground biomass when Anthoxanthum odoratum, a common pasture grass species, was abundant. Community attributes also influenced growth. Although we expected diverse plots to repel the invasion, plants in the more diverse plots had higher amounts of below-ground biomass. Finally, environmental effects also influenced growth. Reed canary grass produced more above-ground biomass in wetter plots, confirming that it does well under wet conditions.  相似文献   

8.
Abstract Aim In general, the plant communities of oceanic islands suffer more from exotic plant invasions than their continental equivalents. At least part of this difference may be contributed by differences in non‐biological factors, such as the antiquity and intensity of human impacts and the absence of internal barriers to dispersal, rather than differences in inherent invasibility. We tested the resistance of species‐rich continental rain forests to plant invasion on a small, continental island that has been subject to prolonged and intensive human impact. Location Singapore is a 683‐km2 equatorial island <1 km from the Asian mainland and with a population of 4 million people. It has a continental biota but has been subject to human impacts as intense as on any oceanic island. Methods We sampled twenty‐nine sites in seven vegetation types, ranging from urban wasteland to fragments of primary lowland rain forest. In each sample plot, all plant species were identified, exotic cover was estimated, and a range of environmental variables measured. Additional qualitative surveys for exotic invasion were made in other forest areas in Singapore. The data were analysed by Spearman's rank correlation coefficient. Results The number of exotic species recorded at a site was unrelated to the number of native species. Across all sites, percentage canopy opening had the highest correlation with the number of exotic species, while soil pH (which largely reflects the incorporation of calcareous construction wastes) had the highest correlation if the mangrove sites were excluded. There were no exotics in mangrove forest and only a tropical American, bird‐dispersed shrub, Clidemia hirta (L.) D. Don (Melastomataceae: Koster's Curse), in primary and tall secondary forest patches. The species‐poor early stages of woody plant succession on highly degraded soils were also very resistant to exotic plant invasion. Main conclusions Long‐isolated rain forest fragments in an exotic‐dominated continental island landscape resist invasion by exotic plants, suggesting that the problems on oceanic islands may reflect an inherently greater invasibility. This study also adds to the increasing evidence that the floras of tropical rain forest fragments in South‐east Asia are remarkably resilient on a time‐scale of decades to a century or more.  相似文献   

9.
Invasive plants have been shown to negatively affect the diversity of plant communities. However, little is known about the effect of invasive plants on the diversity at other trophic levels. In this study, we examine the per capita effects of two invasive plants, purple loosestrife (Lythrum salicaria) and reed canary grass (Phalaris arundinacea), on moth diversity in wetland communities at 20 sites in the Pacific Northwest, USA. Prior studies document that increasing abundance of these two plant species decreases the diversity of plant communities. We predicted that this reduction in plant diversity would result in reduced herbivore diversity. Four measurements were used to quantify diversity: species richness (S), community evenness (J), Brillouin's index (H) and Simpson's index (D). We identified 162 plant species and 156 moth species across the 20 wetland sites. The number of moth species was positively correlated with the number of plant species. In addition, invasive plant abundance was negatively correlated with species richness of the moth community (linear relationship), and the effect was similar for both invasive plant species. However, no relationship was found between invasive plant abundance and the three other measures of moth diversity (J, H, D) which included moth abundance in their calculation. We conclude that species richness within, and among, trophic levels is adversely affected by these two invasive wetland plant species.  相似文献   

10.
Invasive plants, such as Phragmites australis, are a global threat to plant diversity and are commonly controlled using herbicide management. The purpose of this study was to evaluate the plant community response 6–10 years after large‐scale herbicide management to remove Phragmites from Great Lakes coastal wetlands along the shores of western Lake Erie. Vegetation surveys were conducted in nine wetlands undergoing herbicide management and four unmanaged Phragmites‐dominated wetlands. The relative percent cover of Phragmites was dramatically lower in the managed (1.3%) compared to unmanaged wetlands (93.0%; p < 0.001), although relative percent cover of other non‐natives following herbicide management averaged 39.2% (ranging from 6.4 to 67.6%). The cover‐weighted floristic quality index was significantly higher in managed wetlands (p < 0.01), with the highest indices (12.4–17.0) at sites that received prescribed fire after herbicide treatment (p < 0.05). Species richness and diversity were significantly higher in managed wetlands (p < 0.001); however, there was no significant difference between wetlands treated only with herbicide and those treated with herbicide and prescribed fire. Our results indicate that herbicide management is effective in reducing Phragmites and improving floristic quality over timescales of 6–10 years. However, continued spot‐treatment and management of new invasive species may be required, and the return of high‐quality plant communities may be unrealistic in the study region.  相似文献   

11.
We examined how dominance (% canopy cover) and invasion history of common reed, Phragmites australis, affected benthic macroinvertebrate diversity and density in 8 marshes along Lake Erie’s southern shoreline. We also compared macroinvertebrate densities among patches (0.25 m2) of reed, cattail (Typha spp.), and native flora (e.g., Sagittaria, Sparganium) and epiphytic algal communities on submerged stems of reed and cattail. Narrow-leaf cattail (T. angustifolia) is also a common invasive plant to these wetlands, but does not greatly change plant community composition or ecosystem conditions like reed. Macroinvertebrate diversity (Shannon–Weaver H′) was positively related to reed cover and was highest (4.6) in two marshes with ~35- and 5-year invasion histories. Shading from high reed cover increased H′-diversity, in part, by reducing the abundance of floating duckweed, which harbored many Hyalella azteca amphipods. Percent Ephemeroptera, Odonata, and Trichoptera was low to moderate across marshes, regardless of reed cover and invasion history. Macroinvertebrate density was not affected by reed cover or average plant stem density, and did not differ among plant types. However, epiphyton densities and % diatoms were greater on reed than on cattail, suggesting reed provides a better feeding habitat for microalgal grazers than Typha. Abundance rankings of common species in these diatom-dominated communities were also typically dissimilar between these plant types. Although % grazers was unrelated to epiphyton densities and % diatoms, grazer identity (snails) differed between natural and diked marshes, which had different microalgal food supplies. Our findings suggest that Phragmites does not necessarily adversely affect macroinvertebrate community structure and diversity and that invasion history alone has little effect on the H′-diversity–reed dominance relationship.  相似文献   

12.
Habitat restoration to promote wild pollinator populations is becoming increasingly common in agricultural lands. Yet, little is known about how wild bees, globally the most important wild pollinators, use resources in restored habitats. We compared bee use of native and exotic plants in two types of restored native plant hedgerows: mature hedgerows (>10 years from establishment) designed for natural enemy enhancement and new hedgerows (≤2 years from establishment) designed to enhance bee populations. Bees were collected from flowers using timed aerial netting and flowering plant cover was estimated by species using cover classes. At mature hedgerow sites, wild bee abundance, richness, and diversity were greater on native plants than exotic plants. At new sites, where native plants were small and had limited floral display, abundance of bees was greater on native plants than exotic plants; but, controlling for floral cover, there was no difference in bee diversity and richness between the two plant types. At both mature and new hedgerows, wild bees preferred to forage from native plants than exotic plants. Honey bees, which were from managed colonies, also preferred native plants at mature hedgerow sites but exhibited no preference at new sites. Our study shows that wild bees, and managed bees in some cases, prefer to forage on native plants in hedgerows over co‐occurring weedy, exotic plants. Semi‐quantitative ranking identified which native plants were most preferred. Hedgerow restoration with native plants may help enhance wild bee abundance and diversity, and maintain honey bee health, in agricultural areas.  相似文献   

13.
Exotic plants have been found to use allelochemicals, positive plant–soil feedbacks, and high concentrations of soil nutrients to exercise a competitive advantage over native plants. Under laboratory conditions, activated carbon (AC) has shown the potential to reduce these advantages by sequestering organic compounds. It is not known, however, if AC can effectively sequester organics or reduce exotic plant growth under field conditions. On soils dominated by exotic plants, we found that AC additions (1% AC by mass in the top 10 cm of soil) reduced concentrations of extractable organic C and N and induced consistent changes in plant community composition. The cover of two dominant exotics, Bromus tectorum and Centaurea diffusa, decreased on AC plots compared to that on control plots (14–8% and 4–0.1%, respectively), and the cover of native perennial grasses increased on AC plots compared to that on control plots (1.4–3% cover). Despite promising responses to AC by these species, some exotic species responded positively to AC and some native species responded negatively to AC. Consequently, AC addition did not result in native plant communities similar to uninvaded sites, but AC did demonstrate potential as a soil‐based exotic plant control tool, especially for B. tectorum and C. diffusa.  相似文献   

14.
Reed canary grass (Phalaris arundinacea L.) is an aggressive invader that dominates wetlands throughout the US. We examined the effects of reed canary grass on wetland habitat, both vegetation canopy architecture and soil environment, and its impacts the arthropod community in an urban wetland in Portland, OR, USA. Reed canary grass dominance resulted in reduced vegetation canopy complexity through reductions in native vegetation diversity and canopy height. In addition, reed canary grass dominance significantly changed the wetland soil environment, decreasing soil organic content and increasing soil moisture. The arthropod community responded to these habitat changes, being distinct between plots dominated by reed canary grass and those dominated by native vegetation. In addition, diversity measures were significantly lower in plots dominated by reed canary grass. Variables describing both vegetation canopy complexity and soil environment were more important predictors than relative abundance of reed canary grass in multiple regression models developed for dominant arthropod taxa and community metrics. Our results suggest that the mechanism by which reed canary grass affects the wetland arthropod community is primarily indirect, through habitat changes, rather than by directly altering its food source.  相似文献   

15.
Synopsis We surveyed fish communities and corresponding environmental conditions at three broadly similar coastal sites of eastern Andros Island, The Bahamas over a summer–winter–summer sequence to assess the relationship between detailed environmental features and fish species patterns. Environmental variables included covers of various benthic flora components, benthic flora diversity, floral canopy height, micro-crustacean diversity and density, water temperature, extent of destructive land-use and extent of invasion by human-introduced exotic terrestrial plants. Correspondence analysis (CA) indicated that spatial (site) differences in environmental characteristics were greater than temporal (seasonal) differences. Detrended canonical correspondence analysis (DCCA) was used to assess the strength of relationships between the environmental characteristics and the distribution patterns of 25 fish species. Environmental features deemed to be most important in influencing fish species patterns included benthic flora canopy height, extent of invasion by exotic terrestrial plants, cover of Batophora oerstedii, cover of Thalassia testudinum, turf cover, water temperature, micro-crustacean diversity, and micro-crustacean density. Based upon similarities in distribution patterns, fish species formed four clusters which, ultimately, reflected similarities in species’ feeding habits and preferences for habitats that likely maximize foraging success. We conclude that fish distribution patterns are related to environmental characteristics, and that anthropogenic coastal activity, by influencing coastal benthic characteristics, may influence the distribution and abundances of fish species in coastal habitats.  相似文献   

16.
Phylogenetic properties of communities (phylogenetic diversity and phylogenetic structure) allow for the characterisation of phylogenetic patterns and provide the information necessary to infer mechanisms of species assembly. Because humans have introduced exotic species and modified the physical conditions of landscapes, the phylogenetic properties of communities should change according to the proportion of natives to exotics hosted by sites and to the strength of the conditions that act as habitat filters in human‐disturbed habitats. To assess the effects of the introduction of exotic plant species, we characterized the phylogenetic properties of 67 plant communities with different degrees of exotic species dominance in a region of central Chile with a Mediterranean climate. Five indices were used to estimate the phylogenetic properties. The Faith index (FPD), the mean pairwise distance (MPD) and the mean nearest neighbour distance (MNND) were used to estimate phylogenetic diversity, and the nearest relative index (NRI) and the nearest taxon index (NTI) were used as estimators of the phylogenetic structure (the phylogenetic distribution of taxa in a community) of species assemblages. We observed greater phylogenetic diversity of natives versus exotic plants despite the fact that natives accounted for a fewer number of taxa among the studied communities. Second, assemblages exhibited a phylogenetically clustered structure, which is attributable to an over‐representation of some families of exotic flora (Asteraceae, Brassicaceae, Fabaceae, Papaveraceae, Poaceae) and suggests habitat filtering processes that could have acted by selecting species with traits that permit adaptation to the harsh conditions of human‐disturbed sites.  相似文献   

17.
Abstract. It has been suggested that ant nests are the most frequent small‐scale disturbance that affect vegetation patterns. However, their effects on plant diversity are little studied. We document effects of nests of the leaf‐cutting ant Acromyrmex lobicornis on physical‐chemical soil properties and their influence on plant diversity near road verges in a desert steppe in NW Patagonia, Argentina. We analysed nest soils and controls for nitrogen, phosphorus, organic matter, moisture retention capacity and texture. We also analysed the vegetation on 42 nests (30 active and 12 abandoned or without life) and 42 areas without nests. Soil around nests had a greater nutrient content and capacity to retain moisture than control soils, which is mainly due to the presence of organic waste that the ants deposit on the soil surface. We found no association between the occurrence of nests and specific groups of plants, but plant diversity was higher at nest‐sites than at nearby non‐nest sites. This increased diversity – which is also found on abandoned nests – is mainly due to the occurrence of a larger number of native and exotic plant species on nest‐sites that are uncommon elsewhere in the study area. The most abundant plant species showed similar cover values at nest and non‐nest sites. This suggests that changes in diversity are associated to edaphic changes caused by nests rather than by changes in competitive balance caused by dominant species exclusion. We propose that the nests of Acromyrmex lobicornis, through increasing the availability of resources, generate favourable microsites that can function both as ‘refuges’ for less frequent native species, and as‘stepping stones’ for less frequent exotic plant species.  相似文献   

18.
We used data from a 15-year experiment in a C4-dominated grassland to address the effects of community structure (i.e., plant species richness, dominance) and disturbance on invasibility, as measured by abundance and richness of exotic species. Our specific objectives were to assess the temporal and spatial patterns of exotic plant species in a native grassland in Kansas (USA) and to determine the factors that control exotic species abundance and richness (i.e., invasibility). Exotic species (90% C3 plants) comprised approximately 10% of the flora, and their turnover was relatively high (30%) over the 15-year period. We found that disturbances significantly affected the abundance and richness of exotic species. In particular, long-term annually burned watersheds had lower cover of exotic species than unburned watersheds, and fire reduced exotic species richness by 80–90%. Exotic and native species richness were positively correlated across sites subjected to different fire (r = 0.72) and grazing (r = 0.67) treatments, and the number of exotic species was lowest on sites with the highest productivity of C4 grasses (i.e., high dominance). These results provide strong evidence for the role of community structure, as affected by disturbance, in determining invasibility of this grassland. Moreover, a significant positive relationship between exotic and native species richness was observed within a disturbance regime (annually burned sites, r = 0.51; unburned sites, r = 0.59). Thus, invasibility of this C4-dominated grassland can also be directly related to community structure independent of disturbance. Received: 9 February 1999 / Accepted: 12 May 1999  相似文献   

19.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   

20.
Exotic plant invasions are especially problematic because reestablishment of native perennial vegetation is rarely successful. It may be more appropriate to treat exotic plant infestations that still have some remaining native vegetation. We evaluated this restoration strategy by measuring the effects of spring burning, fall burning, fall applied imazapic, spring burning with fall applied imazapic, and fall burning with fall applied imazapic on the exotic annual grass, medusahead (Taeniatherum caput‐medusae (L.) Nevski), and native vegetation at six sites in Oregon for 2 years post‐treatment. Medusahead infestations included in this study had some residual native perennial bunchgrasses and forbs. Burning followed by imazapic application provided the best control of medusahead and resulted in the greatest increases in native perennial vegetation. However, imazapic application decreased native annual forb cover the first year post‐treatment and density the first and second year post‐treatment. The spring burn followed by imazapic application produced an almost 2‐fold increase in plant species diversity compared to the control. The fall burn followed by imazapic application also increased diversity compared to the control. Results of this study indicate that native plants can be promoted in medusahead invasions; however, responses vary by plant functional group and treatment. Our results compared to previous research suggest that restoration of plant communities invaded by exotic annual grass may be more successful if efforts focus on areas with some residual native perennial vegetation. Thus, invasive plant infestations with some native vegetation remaining should receive priority for restoration efforts over near monocultures of invasive plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号