首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several muscles of the cat hindlimb, including biceps femoris and tenuissimus, are composed of short, in-series muscle fibers with tapered intrafascicular terminations. Tension generation and transmission within such muscles requires that active fibers should be mechanically coupled in series via myomyous junctions, specialized connective tissue attachments, or the endomysium. This report establishes that the tapered fibers of the cat biceps femoris and tenuissimus muscles have insignificant numbers of either myomyous or specialized connective tissue junctions. Tension appears to be transmitted in a distributed manner across the plasmalemma of the tapered (and probably the non-tapered) portions of the fibers to the connective tissue of the endomysium, which is therefore an essential series elastic element in these muscles. Subplasmalemmal dense plaques were identified and may play a role in transmembrane force transmission. In addition to the endomysium, passive muscle fibers may also serve to transmit tension between active fibers, and therefore should also be considered to be series elastic elements.  相似文献   

2.
Details and concepts of intramuscular, extramuscular and intermuscular myofascial force transmission are reviewed. Some new experimental data are added regarding myofascial force transmission between antagonistic muscles across the interosseal membrane of the lower hind limb of the rat. Combined with other result presented in this issue, it can be concluded that myofascial force transmission occurs between all muscles within a limb segment. This means that force generated within sarcomeres of an antagonistic muscle may be exerted at the tendon of target muscle or its synergists.

Some, in vivo, but initial indications for intersegmental myofascial force transmission are discussed. The concept of myofascial force transmission as an additional load on the muscle proved to be fruitful in the analysis of its muscular effects. In spastic paresis and for healthy muscles distal myofascial loads are often encountered, but cannot fully explain the movement limitations in spastic paresis. Therefore, the concept of simultaneous and opposing myofascial loads is analyzed and used to formulate a hypothesis for explaining the movement limitation: Myofascially transmitted antagonistic force is borne by the spastic muscle, but subsequently transmitted again to distal tendons of synergistic muscles.  相似文献   


3.
Structures contributing to force transmission in muscle are reviewed combining some historical and relatively recently published experimental data. Also, effects of aponeurotomy and tenotomy are reviewed shortly as well as some new experimental results regarding these interventions that reinforce the concept of myofascial force transmission. The review is also illustrated by some new images of single muscle fibres from Xenopus Laevis indicative of such transmission and some data about locations of insertion of human gluteus maximus muscle. From this review and the new material, emerges a line of thought indicating that mechanical connections between muscle fibres and intramuscular connective tissue play an important role in force transmission. New experimental observations are presented for non-spanning muscle (i.c., rat biceps femoris muscle), regarding the great variety of types of intramuscular connections that exist i n addition to myo-tendinous junctions at the perimuscular ends of muscle fibres. Such connections are classified as (1) tapered end connections, (2) Myo-myonal junctions, (3) myo-epimysial junctions and (3) Myo-endomysial junctions. This line of thought is followed up by consideration of a possible role of connections of intra- and extramuscular connective tissue in force transmission out of the muscle. Experimental results of an explorative nature, regarding the interactions of extensor digitorum longus (EDL), tibialis anterior (TA) and hallucis longus (HAL) muscles within a relatively intact dorsal flexor compartment of the rat hind leg, indicate that: (1) length force properties of EDL are influenced by TA activity in a length dependent fashion. Depending on TA length, force exerted by EDL, kept at constant origin insertion distance, is variable and the effect is influenced by EDL length itself as well; (2) Force is transmitted from muscle to extramuscular connective tissue and vice versa. As a consequence force exerted at proximal and distal tendons of a muscle are not always equal. The difference being transmitted by extramuscular connective tissue and may appear at the tendons of other muscles or may be transmitted via connective tissue directly to bone. It is concluded that the system of force transmission from skeletal muscle should be considered as a multiple system.  相似文献   

4.
The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA + EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA + EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles.In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.  相似文献   

5.
Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior crural and antagonistic peroneal muscles, were investigated. All muscles were either passive or maximally active. Peroneal muscles were kept at a constant muscle tendon complex length. Either EDL or all anterior crural muscles were lengthened so that effects of lengthening of TA + EHL could be analyzed. For both lengthening conditions, a significant difference in proximally and distally measured EDL passive and active forces, indicative of epimuscular myofascial force transmission, was present. However, added lengthening of TA + EHL significantly affected the magnitude of the active and passive load exerted on EDL. For the active condition, the direction of the epimuscular load on EDL was affected; at all muscle lengths a proximally directed load was exerted on EDL, which decreased at higher muscle lengths. Lengthening of anterior crural muscles caused a 26% decrease in peroneal active force.

Extramuscular myofascial connections are thought to be the major contributor to the EDL proximo-distal active force difference. For antagonistic peroneal complex, the added distal lengthening of a synergistic muscle increases the effects of extramuscular myofascial force transmission.  相似文献   


6.
The masticatory apparatus in the albino rat was studied by means of electromyography and subsequent estimation of muscular forces. The activity patterns of the trigeminal and suprahyoid musculature and the mandibular movements were recorded simultaneously during feeding. The relative forces of the individual muscles in the different stages of chewing cycles and biting were estimated on the basis of their physiological cross sections and their activity levels, as measured from integrated electromyograms. Workinglines and moment arms of these muscles were determined for different jaw positions. In the anteriorly directed masticatory grinding stroke the resultants of the muscle forces at each side are identical; they direct anteriorly, dorsally and slightly lingually and pass along the lateral side of the second molar. Almost the entire muscular resultant force is transmitted to the molars while the temporo-mandibular joint remains unloaded. A small transverse force, produced by the tense symphyseal cruciate ligaments balances the couple of muscle resultant and molar reaction force in the transverse plane. After each grinding stroke the mandible is repositioned for the next stroke by the overlapping actions of three muscle groups: the pterygoids and suprahyoids produce depression and forward shift, the suprahyoids and temporal backward shift and elevation of the mandible while the subsequent co-operation of the temporal and masseter causes final closure of the mouth and starting of the forward grinding movement. All muscles act in a bilaterally symmetrical fashion. The pterygoids contract more strongly, the masseter more weakly during biting than during chewing. The wide gape shifts the resultant of the muscle forces more vertically and moreposteriorly. The joint then becomes strongly loaded because the reaction forces are applied far anteriorly on the incisors. The charateristic angle between the almost horizontal biting force and the surface of the food pellet indicates that the lower incisors produce a chisel-like action. Tooth structure reflects chewing and biting forces. The transverse molar lamellae lie about parallel to the chewing forces whereas perpendicular loading of the occlusal surfaces is achieved by their inclination in the transverse plane. The incisors are loaded approximately parallel to their longitudinal axis, placement that avoids bending forces during biting. It is suggested that a predominantly protrusive musculature favors the effective force transmission to the lower incisors, required for gnawing. By grinding food across transversely oriented molar ridges the protrusive components of the muscles would be utilized best. From the relative weights of the masticatory muscles in their topographical relations with joints, molars and incisors it may be concluded that the masticatory apparatus is a construction adapted to optimal transmission of force from muscles to teeth.  相似文献   

7.
Force transmission via pathways other than myotendinous ones, is referred to as myofascial force transmission. The present study shows that myofascial force transmission occurs not only between adjacent synergistic muscles or antagonistic muscles in adjacent compartments, but also between most distant antagonistic muscles within a segment. Tibialis anterior (TA), extensor hallucis longus (EHL), extensor digitorum longus (EDL), peroneal muscles (PER) and triceps surae muscles of 7 male anaesthetised Wistar rats were attached to force transducers, while connective tissues at the muscle bellies were left fully intact. The TA + EHL-complex was made to exerted force at different lengths, but the other muscles were held at a constant muscle–tendon complex length. With increasing TA + EHL-complex length, active force of maximally activated EDL, PER and triceps surae decreased by maximally 5%, 32% and 16%, respectively. These decreases are for the largest part explained by myofascial force transmission. Particularly the force decrease in triceps surae muscles is remarkable, because these muscles are located furthest away from the TA + EHL-complex. It is concluded that substantial extramuscular myofascial force transmission occurs between antagonistic muscles even if the length of the path between them is considerable.  相似文献   

8.
Summary Most cardiac myocytes transmit force across fasciae adherentes, specialized sites of cell-cell adhesion. However, some cardiac myocytes in papillary muscle terminate on collagenous connective tissue in the chordae tendineae. These papillary myotendinous junctions (MTJs) are specialized for force transmission from myocytes to extracellular matrix. In the present study, we compared structural molecules at papillary MTJs to those at fasciae adherentes and skeletal MTJs. By using indirect immunofluorescence, we found that papillary MTJs more closely resemble skeletal MTJs in their molecular composition in that they are enriched in talin, vinculin, integrin, and fibronectin. Zeugmatin and -actinin, both components of fasciae adherentes, are absent from papillary MTJs. Although papillary MTJs and skeletal MTJs display strong similarities in structural protein composition, ultrastructural organization of the two junctions is different. Papillary MTJs display little folding of the junctional membrane and, according to morphological criteria, more closely resemble sites of thin filament-membrane association in smooth muscle than skeletal MTJs. Thus, papillary MTJs display a combination of structural characteristics described previously in skeletal and smooth muscles but exhibit few structural features observed previously in cardiac fasciae adherentes.  相似文献   

9.
Force transmission in rat anterior crural compartment, containing tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL) muscles, was investigated. These muscles together with the muscles of the peroneal compartment were excited maximally. Force was measured at both proximal and distal tendons of EDL muscle as well as at the tied distal tendons of TA and EHL muscles (the TA + EHL complex). Effects of TA + EHL complex length and force on proximally and distally measured forces of EDL muscle kept at constant muscle-tendon complex length were assessed. Length changes of EDL muscle were imposed by movement of the proximal force transducer to different positions.Proximal EDL force was unequal to distal EDL force (active as well as passive) over a wide range of EDL muscle-tendon complex lengths. This is an indication that force is also transmitted out of EDL muscle via pathways other than the tendons (i.e. inter- and/or extramuscular myofascial force transmission). At constant low EDL length, distal lengthening of the TA + EHL complex increased proximal EDL force and decreased distal EDL force. At optimum EDL length, TA+EHL active force was linearly related to the difference between proximal and distal EDL active force. These results indicate intermuscular myofascial force transmission between EDL muscle and the TA + EHL complex. The most likely pathway for this transmission is via connections of the intact intermuscular connective tissue network. The length effects of the TA + EHL complex can be understood on the basis of changes in the configuration, and consequently the stiffness, of these connections. Damage to connective tissue of the compartment decreased the proximo-distal EDL force difference, which indicates the importance of an intact connective tissue network for force transmission from muscle fibers to bone.  相似文献   

10.
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.  相似文献   

11.
Extraocular muscles (EOMs) are specialized skeletal muscles that are constantly active, generate low levels of force for cross sectional area, have rapid contractile speeds, and are highly fatigue resistant. The neuronal isoform of nitric oxide synthase (nNOS) is concentrated at the sarcolemma of fast-twitch muscles fibers, and nitric oxide (NO) modulates contractility. This study evaluated nNOS expression in EOM and the effect of NO modulation on lateral rectus muscle's contractility. nNOS activity was highest in EOM compared with diaphragm, extensor digitorum longus, and soleus. Neuronal NOS was concentrated to the sarcolemma of orbital and global singly innervated fibers, but not evident in the multi-innervated fibers. The NG-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor), increased submaximal tetanic and peak twitch forces. The NO donors S-nitroso-N-acetylcysteine (SNAC) and spermineNONOate reduced submaximal tetanic and peak twitch forces. The effect of NO on the contractile force of lateral rectus muscle is greater than previously observed on other skeletal muscle. NO appears more important in modulating contraction of EOM compared with other skeletal muscles, which could be important for the EOM's specialized role in generation of eye movements.  相似文献   

12.
In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.  相似文献   

13.
Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throughout life. Failure in satellite cell function can lead to delayed, impaired or failed recovery after muscle injury, and such failures become increasingly prominent in cases of progressive muscle disease and in old age. Recent progress in the isolation of muscle satellite cells and elucidation of the cellular and molecular mediators controlling their activity indicate that these cells represent promising therapeutic targets. Such satellite cell-based therapies may involve either direct cell replacement or development of drugs that enhance endogenous muscle repair mechanisms. Here, we discuss recent breakthroughs in understanding both the cell intrinsic and extrinsic regulators that determine the formation and function of muscle satellite cells, as well as promising paths forward to realizing their full therapeutic potential.  相似文献   

14.
BACKGROUND: Myofascial force transmission occurs between muscles (intermuscular myofascial force transmission) and from muscles to surrounding nonmuscular structures such as neurovascular tracts and bone (extramuscular myofascial force transmission). The purpose was to investigate the mechanical role of the epimuscular connections (the integral system of inter- and extramuscular connections) as well as the isolated role of extramuscular connections on myofascial force transmission and to test the hypothesis, if such connections are prestrained. METHOD OF APPROACH: Length-force characteristics of extensor hallucis longus (EHL) muscle of the rat were measured in two conditions: (I) with the neighboring EDL muscle and epimuscular connections of the muscles intact: EDL was kept at a constant muscle tendon complex length. (II) After removing EDL, leaving EHL with intact extramuscular connections exclusively. RESULTS: (I) Epimuscular connections of the tested muscles proved to be prestrained significantly. (1) Passive EHL force was nonzero for all isometric EHL lengths including very low lengths, increasing with length to approximately 13% of optimum force at high length. (2) Significant proximodistal EDL force differences were found at all EHL lengths: Initially, proximal EDL force = 1.18 +/- 0.11 N, where as distal EDL force = 1.50 +/- 0.08 N (mean +/- SE). EHL lengthening decreased the proximo-distal EDL force difference significantly (by 18.4%) but the dominance of EDL distal force remained. This shows that EHL lengthening reduces the prestrain on epimuscular connections via intermuscular connections; however; the prestrain on the extramuscular connections of EDL remains effective. (II) Removing EDL muscle affected EHL forces significantly. (1) Passive EHL forces decreased at all muscle lengths by approximately 17%. However, EHL passive force was still non-zero for the entire isometric EHL length range, indicating pre-strain of extramuscular connections of EHL. This indicates that a substantial part of the effects originates solely from the extramuscular connections of EHL. However, a role for intermuscular connections between EHL and EDL, when present, cannot be excluded. (2) Total EHL forces included significant shape changes in the length-force curve (e.g., optimal EHL force decreased significantly by 6%) showing that due to myofascial force transmission muscle length-force characteristics are not specific properties of individual muscles. CONCLUSIONS: The pre-strain in the epimuscular connections of EDL and EHL indicate that these myofascial pathways are sufficiently stiff to transmit force even after small changes in relative position of a muscle with respect to its neighboring muscular and nonmuscular tissues. This suggests the likelihood of such effects also in vivo.  相似文献   

15.
Muscle cell attachment in Caenorhabditis elegans   总被引:11,自引:2,他引:9       下载免费PDF全文
In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle.  相似文献   

16.
Functional properties of the diaphragm are mediated by muscle structure. Modeling of force transmission necessitates a precise knowledge of muscle fiber architecture. Because the diaphragm experiences loads both along and transverse to the long axes of its muscle fibers in vivo, the mechanism of force transmission may be more complex than in other skeletal muscles that are loaded uniaxially along the muscle fibers. Using a combination of fiber microdissections and histological and morphological methods, we determined regional muscle fiber architecture and measured the shape of the cell membrane of single fibers isolated from diaphragm muscles from 11 mongrel dogs. We found that muscle fibers were either spanning fibers (SPF), running uninterrupted between central tendon (CT) and chest wall (CW), or were non-spanning fibers (NSF) that ended within the muscle fascicle. NSF accounted for the majority of fibers in the midcostal, dorsal costal, and lateral crural regions but were only 25-41% of fibers in the sternal region. In the midcostal and dorsal costal regions, only approximately 1% of the NSF terminated within the fascicle at both ends; the lateral crural region contained no such fibers. We measured fiber length, tapered length, fiber diameters along fiber length, and the taper angle for 271 fibers. The lateral crural region had the longest mean length of SPF, which is equivalent to the mean muscle length, followed by the costal and sternal regions. For the midcostal and crural regions, the percentage of tapered length of NSF was 45.9 +/- 5.3 and 40.6 +/- 7.5, respectively. The taper angle was approximately 0.15 degrees for both, and, therefore, the shear component of force was approximately 380 times greater than the tensile component. When the diaphragm is submaximally activated, as during normal breathing and maximal inspiratory efforts, muscle forces could be transmitted to the cell membrane and to the extracellular intramuscular connective tissue by shear linkage, presumably via structural transmembrane proteins.  相似文献   

17.
Lateral transmission of force from myofibers laterally to the surrounding extracellular matrix (ECM) via the transmembrane proteins between them is impaired in old muscles. Changes in geometrical and mechanical properties of ECM of skeletal muscle do not fully explain the impaired lateral transmission with aging. The objective of this study was to determine the role of transmembrane proteins on force transmission in skeletal muscle. In this study, a 2D finite element model of single muscle fiber composed of myofiber, ECM, and the transmembrane proteins between them was developed to determine how changes in spatial density and mechanical properties of transmembrane proteins affect the force transmission in skeletal muscle. We found that force transmission and stress distribution are not affected by mechanical stiffness of the transmembrane proteins due to its non-linear stress–strain relationship. Results also showed that the muscle fiber with insufficient transmembrane proteins near the end of muscle fiber transmitted less force than that with more proteins does. Higher stress was observed in myofiber, ECM, and proteins in the muscle fiber with fewer proteins.  相似文献   

18.
Even though no direct physiologic evidence proving that myo-tendinous junctions at the end of myofibers are sites of force transmission is available, these locations are accepted to support this function, because its specialized morphology resembles that of load-bearing membranes in structure and location: Its design is fit for force transmission of force exerted by myofibers to tendinous fibrous material. Shearing of the interface between these structures is thought to be stronger than direct tensile transmission. On the basis of morphological studies of 'in-series fibered muscle' and biomechanical modeling it has been argued previously that force could also be transmitted laterally from the tapered ends of myofibers onto in series myofiber via the intramuscular connective tissue component. Shearing of the interfaces between myofibers is hypothesized to be the mechanisms of transmission. The interfaces are made up of basal membranes of both myofibers and their common endomysium. The issue of lateral force transmission from myofibers has not been addressed for whole muscle, in which myofibers are attached at both ends to tendinous aponeuroses, nor is any direct experimental evidence available about possible functional importance of this phenomenon in whole muscle. The primary objective of this presentation is to review available literature on myo-tendinous and myo-fascial force transmission, present evidence from experiments involving tenotomy, fasciatomy and aponeurotomy regarding its importance and consider implications for our thinking about muscle(s) and movement.  相似文献   

19.
Fish skulls are complex kinetic systems with movable components that are powered by muscles. Cranial muscles for jaw closing pull the mandible around a point of rotation at the jaw joint using a third-order lever mechanism. The present study develops a lever model for the jaw of fishes that uses muscle design and the Hill equation for nonlinear length-tension properties of muscle to calculate dynamic power output. The model uses morphometric data on skeletal dimensions and muscle proportions in order to predict behavior and force transmission mediated by lever action. The computer model calculates a range of dynamic parameters of jaw function including muscle force, torque, effective mechanical advantage, jaw velocity, bite duration, bite force, work and power. A complete list of required morphometrics is presented and a software program (MandibLever 2.0) is available for implementing lever analysis. Results show that simulations yield kinematics and timing profiles similar to actual fish feeding events. Simulation of muscle properties shows that mandibles reach their peak velocity near the start of jaw closing, peak force at the end of jaw closing, and peak power output at about 25% of the closing cycle time. Adductor jaw muscles with different mechanical designs must have different contractile properties and/or different muscle activity patterns to coordinate jaw closing. The effective mechanical advantage calculated by the model is considerably lower than the mechanical advantage estimated from morphological lever ratios, suggesting that previous studies of morphological lever ratios have overestimated force and underestimated velocity transmission to the mandible. A biomechanical model of jaw closing can be used to interpret the mechanics of a wide range of jaw mechanisms and will enable studies of the functional results of developmental and evolutionary changes in skull morphology and physiology.  相似文献   

20.
The purpose of the present study was to test the hypothesis that myofascial force transmission may not be limited by compartmental boundaries of a muscle group to synergists. Muscles of the anterior tibial compartment in rat hindlimb as well as of the neighbouring peroneal compartment (antagonistic muscles) were excited maximally. Length–force data, based on proximal lengthening, of EDL, as well as distal lengthening of the tibial muscles (TA + EHL) and the peroneal muscle group (PER) were collected independently, while keeping the other two muscle groups at a constant muscle–tendon complex length. Simultaneously measured, distal and proximal EDL active forces were found to differ significantly throughout the experiment. The magnitude of this difference and its sign was affected after proximal lengthening of EDL itself, but also of the tibial muscle complex and of the peroneal muscle complex. Proximal lengthening of EDL predominantly affected its synergistic muscles within the anterior crural compartment (force decrease <4%). Lengthening of either TA or PER caused a decrease in distal EDL isometric force (by 5–6% of initial force). It is concluded also that mechanisms for mechanical intermuscular interaction extend beyond the limits of muscle compartments in the rat hindlimb. Even antagonistic muscles should not be considered fully independent units of muscular function.

Particular, strong mechanical interaction was found between antagonistic tibial anterior muscle and peroneal muscle complexes: Lengthening of the peroneal complex caused tibial complex force to decrease by approximately 25%, whereas for the reverse a 30% force decrease was found.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号