首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinogenesis is a developmental process that is tightly regulated both temporally and spatially and is therefore an excellent model system for studying the molecular and cellular mechanisms of neurogenesis in the central nervous system. Understanding of these events in vivo is greatly facilitated by the availability of mouse mutant models, including those with natural or targeted mutations and those with conditional knockout or forced expression of genes. This article reviews these genetic modifications and their contribution to the study of retinogenesis in mammals, with special emphasis on conditional gene targeting approaches.  相似文献   

2.
The EUCOMM and KOMP programs have generated targeted conditional alleles in mouse embryonic stem cells for nearly 10,000 genes. The availability of these stem cell resources will greatly accelerate the functional analysis of genes in mice and in cultured cells. We present a method for conditional ablation of genes in ES cells using vectors and targeted clones from the EUCOMM and KOMP conditional resources. Inducible homozygous cells described here provide a precisely controlled experimental system to study gene function in a model cell.  相似文献   

3.
Cotransformation and gene targeting in mouse embryonic stem cells.   总被引:14,自引:3,他引:14       下载免费PDF全文
We have investigated cotransformation in mammalian cells and its potential for identifying cells that have been modified by gene targeting. Selectable genes on separate DNA fragments were simultaneously introduced into cells by coelectroporation. When the introduced fragments were scored for random integration, 75% of the transformed cells integrated both fragments within the genome of the same cell. When one of the cointroduced fragments was scored for integration at a specific locus by gene targeting, only 4% of the targeted cells cointegrated the second fragment. Apparently, cells that have been modified by gene targeting with one DNA fragment rarely incorporate a second DNA fragment. Despite this limitation, we were able to use the cotransformation protocol to identify targeted cells by screening populations of colonies that had been transformed with a cointroduced selectable gene. When hypoxanthine phosphoribosyltransferase (hprt) targeting DNA was coelectroporated with a selectable neomycin phosphotransferase (neo) gene into embryonic stem (ES) cells, hprt-targeted colonies were isolated from the population of neo transformants at a frequency of 1 per 70 G418-resistant colonies. In parallel experiments with the same targeting construct, hprt-targeted cells were found at a frequency of 1 per 5,500 nonselected colonies. Thus, an 80-fold enrichment for targeted cells was observed within the population of colonies transformed with the cointroduced DNA compared with the population of nonselected colonies. This enrichment for targeted cells after cotransformation should be useful in the isolation of colonies that contain targeted but nonselectable gene alterations.  相似文献   

4.
Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells   总被引:255,自引:0,他引:255  
K R Thomas  M R Capecchi 《Cell》1987,51(3):503-512
We mutated, by gene targeting, the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene in mouse embryo-derived stem (ES) cells. A specialized construct of the neomycin resistance (neor) gene was introduced into an exon of a cloned fragment of the Hprt gene and used to transfect ES cells. Among the G418r colonies, 1/1000 were also resistant to the base analog 6-thioguanine (6-TG). The G418r, 6-TGr cells were all shown to be Hprt- as the result of homologous recombination with the exogenous, neor-containing, Hprt sequences. We have compared the gene-targeting efficiencies of two classes of neor-Hprt recombinant vectors: those that replace the endogenous sequence with the exogenous sequence and those that insert the exogenous sequence into the endogenous sequence. The targeting efficiencies of both classes of vectors are strongly dependent upon the extent of homology between exogenous and endogenous sequences. The protocol described herein should be useful for targeting mutations into any gene.  相似文献   

5.
6.
Mice with alterations to specific endogenous genes can be produced by gene targeting in embryonic stem cells. The field has developed rapidly over the past decade, so that large numbers of mice with different gene deficiencies have been generated. Knockout mice provide an ideal opportunity to analyse the function of individual mammalian genes and to model a range of human inherited disorders. This powerful approach has also identified numerous examples of gene redundancy and has highlighted the need to consider metabolic differences between man and mouse in disease modelling. More sophisticated gene-targeting methods are now being used to introduce subtle gene alterations. In the future, more refined genetic analysis and genome, rather than individual gene, alterations will be achieved by incorporating site-specific recombination into targeting strategies. Gene targeting could also make a contribution to improved protocols for gene therapy.  相似文献   

7.
Retinal photoreceptors are highly differentiated postmitotic neurons that transduce photons into electrical signals. While the functions of many photoreceptor-specific genes can be evaluated by direct gene targeting, here we facilitate the studies of nonphotoreceptor-specific genes in these cells by developing an Opsin-iCre transgenic mouse line, iCre-75, in which a 4-kb mouse rod opsin promoter drives the expression of bacteriophage P1 Cre recombinase. Immunohistochemical analysis demonstrated that Cre recombinase is present exclusively in the outer nuclear layer of iCre75 mouse retina. Cre expression is found only in rods and not in cones. The expression level reached 188+/-44 ng per retina at postnatal day (pnd) 11 and increased to 687+/-56 ng at 2 months and older. Cre-mediated excision of floxed genomic DNA was absent at pnd 4, became detectable at pnd 7, and was completed by pnd 18. Retinal morphology and electroretinograms were normal in 8-month-old transgenic animals. The iCre-75 transgenic mice are thus suitable for future genetic studies of essential genes in retinal rod photoreceptors.  相似文献   

8.
9.
10.
Site-1 protease (S1P) cleaves membrane-bound lipogenic sterol regulatory element-binding proteins (SREBPs) and the α/β-subunit precursor protein of the N-acetylglucosamine-1-phosphotransferase forming mannose 6-phosphate (M6P) targeting markers on lysosomal enzymes. The translocation of SREBPs from the endoplasmic reticulum (ER) to the Golgi-resident S1P depends on the intracellular sterol content, but it is unknown whether the ER exit of the α/β-subunit precursor is regulated. Here, we investigated the effect of cholesterol depletion (atorvastatin treatment) and elevation (LDL overload) on ER-Golgi transport, S1P-mediated cleavage of the α/β-subunit precursor, and the subsequent targeting of lysosomal enzymes along the biosynthetic and endocytic pathway to lysosomes. The data showed that the proteolytic cleavage of the α/β-subunit precursor into mature and enzymatically active subunits does not depend on the cholesterol content. In either treatment, lysosomal enzymes are normally decorated with M6P residues, allowing the proper sorting to lysosomes. In addition, we found that, in fibroblasts of mucolipidosis type II mice and Niemann-Pick type C patients characterized by aberrant cholesterol accumulation, the proteolytic cleavage of the α/β-subunit precursor was not impaired. We conclude that S1P substrate-dependent regulatory mechanisms for lipid synthesis and biogenesis of lysosomes are different.  相似文献   

11.
Transgenic and gene targeting studies of hair cell function in mouse inner ear   总被引:13,自引:0,他引:13  
Despite the rapid discovery of a large number of genes in sensory hair cells of the inner ear, the functional roles of these genes in hair cells remain largely undetermined. Recent advances in transgenic and gene targeting technologies in mice have offered unprecedented opportunities to genetically manipulate the expression of these genes and to study their functional roles in hair cells in vivo. Transgenic analyses have revealed the presence of hair-cell-specific promoters in the genes encoding Math1, myosin VIIa, Pou4f3, and the alpha9 subunit of the acetylcholine receptor (alpha9 AChR). Targeted inactivation using embryonic stem cell technology and transgenic expression studies have revealed the roles of several genes involved in hair cell lineage (Math1), differentiation (Pou4f3), mechanotransduction (Myo1c, and Myo7a), electromotility (Prestin), and efferent modulation (Chrna9, encoding alpha9 AChR). Although many of these genes also play roles in other tissues, inactivation of these genes in hair cells alone will soon be possible by using the Cre-loxP system. Also imminent is the development of genetic methods to inactivate genes specifically in mouse hair cells at a desired time, by using inducible systems established in other types of neurons. Combining these types of manipulation of gene expression will enable hearing researchers to elucidate some of the fundamental and unique features of hair cell function such as mechanotransduction, frequency tuning, active mechanical amplification, and efferent modulation.  相似文献   

12.
13.
Targeting vectors for embryonic stem (ES) cells typically contain a mouse gene segment of >7 kb with the neo gene inserted for positive selection of the targeting event. More complex targeting vectors carry additional genetic elements (e.g. lacZ, loxP, point mutations). Here we use homologous recombination in yeast to construct targeting vectors for the incorporation of genetic elements (GEs) into mouse genes. The precise insertion of GEs into any position of a mouse gene segment cloned in an Escherichia coli/yeast shuttle vector is directed by short recombinogenic arms (RAs) flanking the GEs. In this way, complex targeting vectors can be engineered with considerable ease and speed, obviating extensive gene mapping in search for suitable restriction sites.  相似文献   

14.
The major impact of the human genome sequence is the understanding of disease etiology with deduced therapy. The completion of this project has shifted the interest from the sequencing and identification of genes to the exploration of gene function, signalling the beginning of the post-genomic era. Contrasting with the spectacular progress in the identification of many morbid genes, today therapeutic progress is still lagging behind. The goal of all gene therapy protocols is to repair the precise genetic defect without additional modification of the genome. The main strategy has traditionally been focused on the introduction of an expression system designed to express a specific protein, defective in the transfected cell. But the numerous deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. Among these one is represented by gene repair based on homologous recombination (HR). Simply stated, the process involves targeting the mutation in situ for gene correction and for restoration of a normal gene function. Homologous recombination is an efficient means for genomic manipulation of prokaryotes, yeast and some lower eukaryotes. By contrast, in higher eukaryotes it is less efficient than in the prokaryotic system, with non-homologous recombination being 10-50 fold higher. However, recent advances in gene targeting and novel strategies have led to the suggestion that gene correction based on HR might be used as clinical therapy for genetic disease. This site-specific gene repair approach could represent an alternative gene therapy strategy in respect to those involving the use of retroviral or lentiviral vectors to introduce therapeutic genes and linked regulatory sequences into random sites within the target cell genome. In fact, gene therapy approaches involving addition of a gene by viral or nonviral vectors often give a short duration of gene expression and are difficult to target to specific populations of cells. The purpose of this paper is to review oligonucleotide-based gene targeting technologies and their applications on modifying the mouse genome.  相似文献   

15.
The introduction of subtle mutations to predetermined locations in the mouse genome has aided in the assessment of gene function and the precise modeling of inherited disorders. Subtle mutations can be engineered into the mouse genome by the tag and exchange gene targeting strategy (Askew et al., 1993; Stacey et al., 1994; Wu et al., 1994). This two-step method involves both a positive and a negative selection. The negative selection step typically generates a large amount of undesired background that may prevent the practical recovery of gene targeted clones (Vazquez et al., 1998). In this work we describe a strategy to effectively manage this background by calculation of a tolerable level of background for a specific targeting event, pre-screening for clones with low background, subcloning and growth of cell lines under selection. This strategy was used to repeatedly and efficiently alter the mouse Huntington's disease homologue (Hdh) resulting in an average of 15 percent of the clones having the desired modification. Analysis of the remaining background clones showed they arose de novo by a mechanism that involved physical loss of the marker rather than mutation or inactivation. We calculated the rate of loss of this marker as 8.3×10–6 events/cell/generation. We further show that the exchanged clones retained the capacity to contribute to the mouse germline demonstrating the utility of this strategy in the production of mouse lines with Hdh variants.  相似文献   

16.
The efficiency of tag-and-exchange gene targeting approaches for the introduction of precise genomic modifications is compromised by high levels of non-homologous recombinants which survive selection due to loss of tag gene expression, often by physical loss of the tag gene. We describe a modified approach, termed stable tag-exchange, which incorporates an additional positive selection (stability) cassette to circumvent this limitation. HPRT (tag) and neo (stability) cassettes, separated by 4.9 kb of homologous DNA, were introduced efficiently into the LIF locus of ES cells. The tag cassette was substituted for abeta-galactosidase gene in exchange step targeting. Direct comparison of the tag-and-exchange and stable tag-exchange approaches indicated respective targeting efficiencies of 21% and 88%. The increased stable tag-exchange targeting efficiency resulted from elimination of >75% of background lines which survived tag-and-exchange selection due to physical loss of the tag gene. These resulted from reversion of the tagged allele to wild-type which is therefore a major contributor to tag-and-exchange targeting background. Our results extend the application of gene targeting by demonstrating a rationale for single-step integration of multiple regions of extended non-homology, and providing an efficient system for the repeated introduction of precise alterations into the mammalian genome.  相似文献   

17.
We wish to construct a mouse model for the human inherited disease cystic fibrosis. We describe here the successful targeting in embryonal stem cells of the murine homologue (Cftr) of the cystic fibrosis transmembrane conductance regulator gene, as the first critical step towards this end. The targeting event precisely disrupts exon 10, the site of the major mutation in patients with cystic fibrosis. The targeted cells are pluripotent and competent to form chimaeras.  相似文献   

18.
Gene targeting is a technique that allows the introduction of predefined alterations into chromosomal DNA. It involves a homologous recombination reaction between the targeted genomic sequence and an exogenous targeting vector. In theory, gene targeting constitutes the ideal method of gene therapy for single gene disorders. In practice, gene targeting remains extremely inefficient for at least two reasons: very low frequency of homologous recombination in mammalian cells and high proficiency of the mammalian cells to randomly integrate the targeting vector by illegitimate recombination. One known method to improve the efficiency of gene targeting is inhibition of poly(ADP-ribose)polymerase (PARP). It has been shown that PARP inhibitors, such as 3-methoxybenzamide, could lower illegitimate recombination, thus increasing the ratio of gene targeting to random integration. However, the above inhibitors were reported to decrease the absolute frequency of gene targeting. Here we show that treatment of mouse Ltk cells with 1,5-isoquinolinediol, a recent generation PARP inhibitor, leads to an increase up to 8-fold in the absolute frequency of gene targeting in the correction of the mutation at the stable integrated HSV tk gene.  相似文献   

19.
Homologous recombination in Escherichia coli simplifies the generation of gene targeting constructs for transduction into mouse embryonic stem (ES) cells. Taking advantage of the extensive homology provided by intact bacterial artificial chromosomes (BACs), we have developed an efficient method for preparing targeted gene disruptions in ES cells. Correctly integrated clones were identified by a simple screening procedure based on chromosomal fluorescence in situ hybridization (FISH). To date, five mutant lines have been generated and bred to homozygosity by this approach.  相似文献   

20.
The CRISPR/Cas9 system has rapidly advanced targeted genome editing technologies. However, its efficiency in targeting with constructs in mouse zygotes via homology directed repair (HDR) remains low. Here, we systematically explored optimal parameters for targeting constructs in mouse zygotes via HDR using mouse embryonic stem cells as a model system. We characterized several parameters, including single guide RNA cleavage activity and the length and symmetry of homology arms in the construct, and we compared the targeting efficiency between Cas9, Cas9nickase, and dCas9–FokI. We then applied the optimized conditions to zygotes, delivering Cas9 as either mRNA or protein. We found that Cas9 nucleo-protein complex promotes highly efficient, multiplexed targeting of circular constructs containing reporter genes and floxed exons. This approach allows for a one-step zygote injection procedure targeting multiple genes to generate conditional alleles via homologous recombination, and simultaneous knockout of corresponding genes in non-targeted alleles via non-homologous end joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号