首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses contain either DNA or RNA as genomes. DNA viruses replicate within nucleus, while most RNA viruses, especially (+)-sense single-stranded RNA, replicate and are present within cytoplasm. We proposed a new thought that is contrary to the common notion that (+)-sense single-stranded RNA viruses are present only in the cytoplasm. In this study, we question whether the genome of a plant RNA virus (non-retroviral) is present in the nucleus of infected cells? Hibiscus chlorotic ringspot virus (HCRSV) RNA was detected in the nucleus of infected cells, as shown by fluorescent in situ hybridization. Western blot using anti-histone 3 and anti-phosphoenolpyruvate carboxylase showed that nuclei were highly purified from mock and HCRSV-infected kenaf (Hibiscus cannabilis L.) leaves, respectively. The p23 and HCRSV coat protein (CP) coding regions were both amplified from total RNA extracted from isolated nuclei. Viral RNA in the nucleus may be used to generate viral microRNAs (vir-miRNAs), as five putative vir-miRNAs were predicted from HCRSV using the vir-miRNAs prediction database. The vir-miRNA (hcrsv-miR-H1-5p) was detected using TaqMan® stem-loop real-time PCR, and by northern blot using DIG-end labeled probe in HCRSV-infected kenaf leaves. Finally, a novel nuclear localization signal (NLS) was discovered in p23 of HCRSV. The NLS interacts with importin α and facilitates viral RNA genome to enter nucleus. We demonstrate the presence of a (+)-sense single-stranded viral RNA within nucleus.  相似文献   

2.
3.
The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size.  相似文献   

4.
Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug design.  相似文献   

5.
6.
7.
Abstract

The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

8.
9.
Genome localization of adeno-associated virus RNA.   总被引:1,自引:6,他引:1       下载免费PDF全文
  相似文献   

10.
《Seminars in Virology》1997,8(3):256-273
The VPg-linked, plus-stranded RNA genomes of entero- and rhinoviruses contain very different 5′ and 3′ terminal regions which harbor signals for RNA replication. The terminal cloverleaf-like structure of the 5′-nontranslated region (5′NTR) is known to be required for plus-strand RNA synthesis. Genetic evidence suggest that two stem-loop structures and the poly(A) tail of the 3′NTR have a function in minus-strand synthesis. All of the nonstructural viral proteins, and possibly also some cellular polypeptides, are believed to be involved in RNA replication. RNA synthesis is initiated on a poly(A) template and involves uridylylation of VPg to yield VPgpU(pU). This precursor is likely to serve as primer for the RNA polymerase 3Dpolduring both minus- and plus-strand RNA synthesis.  相似文献   

11.
12.
13.
14.
赵轩  邓竞  马潇雨  朱旭东  张萍 《微生物学报》2022,62(5):1656-1668
RNA干扰(RNA interference,RNAi)是一种保守的真核生物基因调控机制,它利用小的非编码RNA介导转录/转录后的基因沉默。虽然部分真菌丢失了RNAi系统,但随着对真菌RNAi机制研究的增加,越来越多的证据表明,真菌的RNAi系统不但参与维持基因组完整性,其在调节真菌生长发育、介导异染色质组装、促进着丝粒进化、调节真菌耐药性与毒力等方面也具有重要作用。本文主要对真菌中RNAi的生物学功能进行综述,以期为进一步深入研究真菌RNA干扰机制提供一定的理论与研究基础。  相似文献   

15.
Spermatogonial stem cells (SSCs) reside on the basement membrane of the seminiferous tubules in mammalian testes (Nagano et al., 1998). After isolation and purification of SSCs from mouse testis, SSCs can be cultured in vitro to derive germ-line stem cells (GSCs) which have the ability of proliferation over 2 years (Kanatsu-Shinohara et al.. 2003;  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号