首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial peptidomacrolide FK506 affects many eukaryotic developmental and cell signaling programs via calcineurin inhibition. Prior formation of a complex between FK506 and intracellular FK506-binding proteins (FKBPs) is the precondition for the interaction with calcineurin. A puzzling difference has emerged between the mammalian multidomain protein hFKBP38 and other FKBPs. It was shown that hFKBP38 not only binds to calcineurin but also inhibits the protein phosphatase activity of calcineurin on its own [Shirane, M. and Nakayama, K.I. (2003) Nature Cell Biol. 5, 28-37]. Inherent calcineurin inhibition by hFKBP38 would completely eliminate the need for FK506 in controlling many signal transduction pathways. To address this issue, we have characterized the functional and physical interactions between calcineurin and hFKBP38. A recombinant hFKBP38 variant and endogenous hFKBP38 were tested both in vitro and in vivo. The proteins neither directly inhibited calcineurin activity nor affected NFAT reporter gene activity in SH-SY5Y and Jurkat cells. In addition, a direct physical interaction between calcineurin and hFKBP38 was not detected in co-immunoprecipitation experiments. However, hFKBP38 indirectly affected the subcellular distribution of calcineurin by interaction with typical calcineurin ligands, as exemplified by the anti-apoptotic protein Bcl-2. Our data suggest that hFKBP38 cannot substitute for the FKBP/FK506 complex in signaling pathways controlled by the protein phosphatase activity of calcineurin.  相似文献   

2.
Xiao H  Jackson V  Lei M 《FEBS letters》2006,580(18):4357-4364
Fpr4, a FK506-binding protein (FKBP), is a recently identified novel histone chaperone. How it interacts with histones and facilitates their deposition onto DNA, however, are not understood. Here, we report a functional analysis that shows Fpr4 forms complexes with histones and facilitates nucleosome assembly like previously characterized acidic histone chaperones. We also show that the chaperone activity of Fpr4 resides solely in an acidic domain, while the peptidylprolyl isomerase domain conserved among all FKBPs inhibits the chaperone activity. These observations argue that Fpr4, while unique structurally, deposits histones onto DNA for nucleosome assembly through the well-established mechanism shared by other chaperones.  相似文献   

3.
FK-506结合蛋白对钙释放通道的调控   总被引:1,自引:0,他引:1  
细胞内自由钙作为一种重要的细胞信使广泛地参与细胞生理功能调控.胞内钙库(内质网系和肌浆网系)对调节细胞内自由钙水平起着重要的作用.钙库膜上的钙释放通道(ryanodine受体和三磷酸肌醇受体)受许多因素调控,其中之一就是新近研究得相当多的FK506结合蛋白.免疫抑制剂FK506能特异地结合钙库上一种分子质量为12 ku左右的蛋白,这种FK506结合蛋白与钙释放通道形成一种紧密连接的复合体,在正常生理情况下对钙释放通道起着十分重要的调控作用.  相似文献   

4.
Metal-chelating ligand and/or comonomer 2-methacrylolyamidohistidine (MAH) was synthesized by using methacryloyl chloride and L-histidine methyl ester. MAH was characterized by NMR and FTIR. Spherical beads with an average diameter of 75-125 microm were produced by suspension polymerization of methylmethacrylate (MMA) and MAH carried out in an aqueous dispersion medium. Poly(MMA-MAH) beads had a specific surface area of 37.5 m(2)/g. Poly(MMA-MAH) beads were characterized by water uptake studies, FTIR, SEM and elemental analysis. Elemental analysis of MAH for nitrogen was estimated as 34.7 microM/g of polymer. Then, Cu(2+) ions were chelated on the beads. Cu(2+)-chelated beads with a swelling ratio of 38% were used in the adsorption of human-immunoglobulin G (HIgG) from both aqueous solutions and human plasma. The maximum adsorption capacities of the Cu(2+)-chelated beads were found to be 12.2 mg/g at pH 6.5 in phosphate buffer and 15.7 mg/g at pH 7.0 in MOPS. Higher adsorption value was obtained from human plasma (up to 54.3 mg/g) with a purity of 90.7%. The metal-chelate affinity beads allowed one-step separation of HIgG from human plasma. The adsorption-desorption cycle was repeated 10 times using the same beads without noticeable loss in their HIgG adsorption capacity.  相似文献   

5.
Sardar M  Gupta MN 《Bioseparation》1998,7(3):159-165
Calcium-alginate beads were found to bind a variety of enzymes in a nonspecific fashion. However, alpha amylases from porcine pancreas, Bacillus subtilis (BAN 240L) and wheat germ bound at a significant level and B. subtilis and wheat germ amylases could be eluted with 1M maltose. The wheat germ alpha amylase could be purified 45 fold with 70% recovery. The SDS - PAGE pattern showed significant purification by this single step strategy.  相似文献   

6.
Affinity purification of fibrinogen using a ligand from a peptide library.   总被引:6,自引:0,他引:6  
An affinity resin containing the peptide ligand Phe-Leu-Leu-Val-Pro-Leu (FLLVPL) has been developed for the purification of fibrinogen. The ligand was identified by screening a solid-phase combinatorial peptide library using an immunostaining technique. The specific binding of fibrinogen to the ligand has been characterized by isothermal calorimetry and adsorption isotherms and is dominated by both hydrophobic interactions and ionic interactions with the N-terminal free amino group. The effective association constant of fibrinogen was substantially higher when the peptide was immobilized on the resin than in solution; moreover, it increased with increasing peptide density, suggesting a cooperative binding effect. A low ionic strength buffer at pH 4 was used successfully to elute adsorbed fibrinogen from the column with high purity, retention of factor XIII crosslinking activity, and minimal, if any, loss of biological function. This general approach to ligand selection and characterization can be used to develop peptide ligands for the affinity purification of diverse proteins on a large scale.  相似文献   

7.
In smooth muscle, the ryanodine receptor (RyR) mediates Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store. Release may be regulated by the RyR accessory FK506-binding protein (FKBP12) either directly, as a result of FKBP12 binding to RyR, or indirectly via modulation of the activity of the phosphatase calcineurin or kinase mTOR. Here we report that RyR-mediated Ca(2+) release is modulated by FKBP12 in colonic but not aortic myocytes. Neither calcineurin nor mTOR are required for FKBP12 modulation of Ca(2+) release in colonic myocytes to occur. In colonic myocytes, co-immunoprecipitation techniques established that FKBP12 and calcineurin each associated with the RyR2 receptor isoform (the main isoform in this tissue). Single colonic myocytes were voltage clamped in the whole cell configuration and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) increases evoked by the RyR activator caffeine. Under these conditions FK506, which displaces FKBP12 (to inhibit calcineurin) and rapamycin, which displaces FKBP12 (to inhibit mTOR), each increased the [Ca(2+)](c) rise evoked by caffeine. Notwithstanding, neither mTOR nor calcineurin are required to potentiate caffeine-evoked Ca(2+) increases evoked by each drug. Thus, the mTOR and phosphatidylinositol 3-kinase inhibitor, LY294002, which directly inhibits mTOR without removing FKBP12 from RyR, did not alter caffeine-evoked [Ca(2+)](c) transients. Nor did inhibition of calcineurin by cypermethrin, okadaic acid or calcineurin inhibitory peptide block the FK506-induced increase in RyR-mediated Ca(2+) release. In aorta, although RyR3 (the main isoform), FKBP12 and calcineurin were each present, RyR-mediated Ca(2+) release was unaffected by either FK506, rapamycin or the calcineurin inhibitors cypermethrin and okadaic acid in single voltage clamped aortic myocytes. Presumably failure of FKBP12 to associate with RyR3 resulted in the immunosuppressant drugs (FK506 and rapamycin) being unable to alter the activity of RyR. The effects of these drugs are therefore, apparently dependent on an association of FKBP12 with RyR. Together, removal of FKBP12 from RyR augmented Ca(2+) release via the channel in colonic myocytes. Neither calcineurin nor mTOR are required for the FK506- or rapamycin-induced potentiation of RyR Ca(2+) release to occur. The results indicate that FKBP12 directly inhibits RyR channel activity in colonic myocytes but not in aorta.  相似文献   

8.
The 12 kDa FK506-binding protein (FK506BP12), an immunosuppressor, modulates T cell activation via calcineurin inhibition. In this study, we investigated the ability of PEP-1-FK506BP12, consisting of FK506BP12 fused to the protein transduction domain PEP-1 peptide, to suppress catabolic responses in primary human chondrocytes and in a mouse carrageenan-induced paw arthritis model. Western blotting and immunofluorescence analysis showed that PEP-1-FK506BP12 efficiently penetrated chondrocytes and cartilage explants. In interleukin-1β (IL-1β)-treated chondrocytes, PEP-1-FK506BP12 significantly suppressed the expression of catabolic enzymes, including matrix metalloproteinases (MMPs)-1, -3, and -13 in addition to cyclooxygenase-2, at both the mRNA and protein levels, whereas FK506BP12 alone did not. In addition, PEP-1-FK506BP12 decreased IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) complex (p38, JNK, and ERK) and the inhibitor kappa B alpha. In the mouse model of carrageenan-induced paw arthritis, PEP-1-FK506BP12 suppressed both carrageenan-induced MMP-13 production and paw inflammation. PEP-1-FK506BP12 may have therapeutic potential in the alleviation of OA progression. [BMB Reports 2015; 48(7): 407-412]  相似文献   

9.
10.
Screening strategies based on functional genomics require the isolation of gene products of several hundred cDNA clones in a fast and versatile manner. Conventional purification strategies will fail to accomplish this goal within a reasonable time frame. In order to short-cut these procedures, we have developed a combination of cell disintegration and affinity technique for rapid isolation and purification. For our purpose, tagged proteins have been produced in yeast by fusing the FLAG-sequence adjacent to the 5 end of cDNAs coding for the respective protein. The example of an over-expressed FLAG-tagged fusion protein, human serum albumin (HSA), was released into the cytoplasm. Detection and purification of the FLAG-fusion protein were carried out by using a mouse monoclonal antibody directed against the FLAG-peptide. For purification purposes, the antibody was immobilized on PROSEP magnetic glass beads. These magnetic glass beads with 500 m diameter have been investigated for disintegration of yeast and simultaneous capturing of the target protein. After 60 s, 90% of the maximal disintegration level was achieved when a ratio of 20 l yeast cell suspension and 100 l glass are vortexed. After a wash step, the FLAG-fusion proteins have been eluted with chelating agents such as EDTA. The short-cut procedure has been compared to a conventional purification strategy using an affinity chromatography process. Due to the highly favorable binding characteristics of the applied immunoaffinity sorbent the yield observed in batch operation was 90% and purity in the range of 70–80%.  相似文献   

11.
Peptidyl-prolyl isomerase (PPIase) activity is exhibited by many proteins belonging to the PPIase family. However, the catalytic mechanism of this activity remains to be completely elucidated. Here, we selected human FK506-binding protein 12 (FKBP12) as the model PPIase and investigated the nature of amino acid residues essential for the activity. The crystal structures of several complexes of PPIase with short peptides revealed that the residues Asp37, Arg42, Phe46, Val55, Trp59, and Tyr82 in the substrate-binding cavity of FKBP12 appear to play key roles in the PPIase activity. Each of these six residues was substituted by 20 common amino acid residues. The activity of each mutant protein was measured using a peptide analog by the chymotrypsin digestion assay and then compared with wild-type FKBP12. It was found that site-specific interactions by the side chains of amino acid residues constituting the substrate-binding cavity were not essential for the PPIase activity, although the 37th, 55th, and 82nd amino acid residues significantly contributed to the activity. This suggests that the PPIase activity requires only the hydrophobic cavity that captures the Pro-containing peptide.  相似文献   

12.
FKBP, an 11.8 kD intracellular protein that binds the immunosuppressants FK506 (K d=0.4 nM) and rapamycin (K d=0.2 nM) with high affinity, was purified to homogeneity from calf thymus. The complete amino acid sequence has been determined by automated Edman degradation of the intact molecule and overlapping fragments generated by proteolytic and chemical cleavage. The analysis revealed a 107 amino acid peptide chain with the following sequence: GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFVLGKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPNATLIFDVELLKLE. The molecular weight, calculated from the amino sequence to be 11,778 D, was confirmed by electrospray ionization mass spectrometry. Thus, naturally isolated bovine FKBP does not appear to have any residues modified by glycosylation, phosphorylation, or other post-translational derivatization processes. Bovine FKBP has only three amino acid residues that differ from human FKBP, whose sequence was elucidated by cloning and sequencing complementary DNA (Standaertet al., 1990). The protein has a substantial number of hydrophilic peptide segments with prevalent -strand type of chain fold. Understanding the biological function of FKBP and other members of the immunophilin class and their respective complexes with immunosuppressive drugs may provide insights into cytoplasmic signalling mechanisms, protein folding and translocation, and other cellular processes.  相似文献   

13.
Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), a primary output signal of phosphoinositide (PI) 3-kinase, plays a crucial role in diverse cellular processes. Evidence indicates that PIP(3) exerts downstream signaling, in part, by recruiting effector proteins to plasma membranes. Consequently, identification of signaling enzymes with PIP(3)-binding motifs represents a viable approach to understand the mechanism by which specificity of the PI 3-kinase-mediated signaling network is maintained. To address this issue, we have developed biotinylated derivatives of PIP(3) as affinity probes for the purification and characterization of PIP(3)-binding proteins. Considering the relaxed requirement for the acyl moiety in PIP(3) recognition, these biotinylated PIP(3) analogues display two structural features. First, they contain short acyl side chains (C(4) and C(8)), allowing them to be soluble in aqueous milieu. This desirable feature avoids the formation of lipid aggregates, which minimizes nonspecific hydrophobic interactions with proteins. Second, the appended biotin is located at the terminus of the sn-1 acyl side chain, thereby maintaining the integrity of the phosphoinositol head group essential for selective recognition. The utility of these affinity ligands is validated by the purification of recombinant PIP(3)-binding proteins, expressed as GST fusion proteins, to homogeneity from bacterial lysates. These include the C-terminal SH2 domain of the p85 subunit of PI 3-kinase and the N-terminal PH domain of PLCgamma1. The efficiency of biotinylated PIP(3) analogues in the purification of these recombinant proteins was approximately 20% of that of glutathione beads Copyright 2000 Academic Press.  相似文献   

14.
In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein–ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski’s equality was employed compared with the second-order cumulant expansion equation of Jarzynski’s equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.  相似文献   

15.
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.  相似文献   

16.
17.
Cyclic ADP-ribose (cADPR), accumulated in pancreatic β-cells in response to elevated ATP levels after glucose stimulation, mobilizes Ca2+ from the endoplasmic reticulum through the ryanodine receptor (RyR) and thereby induces insulin secretion. We have recently demonstrated in an in vitro study that cADPR activates RyR through binding to FK506-binding protein 12.6 (FKBP12.6), an accessory protein of RyR. Here we generated FKBP12.6-deficient (FKBP12.6−/−) mice by homologous recombination. FKBP12.6−/− mice showed glucose intolerance coupled to insufficient insulin secretion upon a glucose challenge. Insulin secretion in response to glucose was markedly impaired in FKBP12.6−/− islets, while sulfonylurea- or KCl-induced insulin secretion was unaffected. No difference was found in the glucose oxidation rate between FKBP12.6−/− and wild-type islets. These results indicate that FKBP12.6 plays a role in glucose-induced insulin secretion downstream of ATP production, independently of ATP-sensitive K+ channels, in pancreatic β-cells.  相似文献   

18.
We report a novel affinity‐based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L ‐histidine‐immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme‐tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200–500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag‐HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.  相似文献   

19.
Chitosan/cellulose-based beads (CCBs) for the affinity purification of histidine-tagged proteins were prepared from chitosan/cellulose dissolved in ionic liquid as a solvent, and their structures were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The affinity purification was used to separate hexahistidine-tagged (his-tagged) enhanced green fluorescent protein (EGFP) from Escherichia coli. The results showed that Zn2+–CCB exhibited more specific adsorption capacity toward the target protein compared with Ni2+–CCB and Cu2+–CCB. The maximum adsorption of EGFP was 1.84?mg/g of Zn2+–CCB, with 90% purity under the optimized conditions (ionic strength (1.0?M NaCl), pH (7.2) and imidazole concentration (500?mM)). In addition, a regeneration method for the sorbent was further developed by washing with ethylenediaminetetraacetic acid disodium and then reimmobilizing with metal ions. This technique is an alternative method for the purification of his-tagged proteins, making the process more economical, fast, stable, and large batch.  相似文献   

20.
Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (KD ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non‐antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号