共查询到20条相似文献,搜索用时 15 毫秒
1.
Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter. 相似文献
2.
Gabdrakhmanova LA Shakirov EV Balaban NP Sharipova MR Rudenskaia GN Kostrov SV Akimkina TV Leshchinskaia IB 《Mikrobiologiia》2000,69(5):653-659
A nutrient medium was elaborated for the efficient production of glutamyl endopeptidase by the recombinant Bacillus subtilis strain AJ73 bearing the Bacillus intermedius 3-19 glutamyl endopeptidase gene within a multicopy plasmid. Optimal concentrations of the main nutrients, peptone and inorganic phosphate, were found using a multifactor approach. To provide for active growth and efficient glutamyl endopeptidase production, the cultivation medium of the recombinant strain should be enriched in phosphorus, organic and inorganic nitrogen sources, and yeast extract. Complex protein substrates, such as casein and gelatin, enhanced the biosynthesis of glutamyl endopeptidase. At the same time, easily metabolizable carbon sources suppressed it. The production of glutamyl endopeptidase was stimulated by the bivalent cations Ca2+, Mg2+, and Co2+. 相似文献
3.
Zai-wei Man Zhi-ming Rao Yi-peng Cheng Tao-wei Yang Xian Zhang Mei-juan Xu Zheng-hong Xu 《World journal of microbiology & biotechnology》2014,30(2):661-667
Dissolved oxygen is one of the most important bioprocess parameters that could affect cell growth and product formation, and it is easy to control by changing agitation speed. In this work, the effects of agitation speed on the performance of riboflavin production by recombinant Bacillus subtilis RF1 was investigated in fed-batch fermentation. The lower agitation speed (600 rpm) was beneficial for cell growth and riboflavin biosynthesis in the initial phase of fermentation process. While, during the later phase, higher agitation speed (900 rpm) was favor for cell growth and riboflavin biosynthesis. Thus, a two-stage agitation speed control strategy was proposed based on kinetic analysis, in which the agitation speed was controlled at 600 rpm in the first 26 h and then switched to 900 rpm to maintain high μ for cell growth and high q p for riboflavin production during the entire fermentation process. However, it was observed that a sharp increase of agitation speed resulted in an adverse effect on cell growth and riboflavin synthesis within a short time. To avoid this phenomenon, a multi-stage agitation speed control strategy was set up based on the two-stage control strategy, the maximum concentration of riboflavin reached 9.4 g l?1 in 48 h with the yield of 0.051 g g?1 by applying this strategy, which were 20.5 and 21.4 % over the best results controlled by constant agitation speeds. 相似文献
4.
Zhiwei Pan Drew S. Cunningham Tao Zhu Kaimin Ye Richard R. Koepsel Michael M. Domach Mohammad M. Ataai 《Applied microbiology and biotechnology》2010,85(6):1769-1778
Previous work demonstrated that acetate production was substantially lower in pyruvate kinase (pyk) mutant of Bacillus subtilis. The significantly lower acetate production in the pyk mutant is hypothesized to have positive effect on recombinant protein production either by lifting the inhibitory effect
of acetate accumulation in the medium or redirecting the metabolic fluxes beneficial to biomass/protein synthesis. In this
study, the impact of the pyk mutation on recombinant protein production was investigated. Green fluorescent protein (GFP+) was selected as a model protein
and constitutively expressed in both the wild-type strain and a pyk mutant. In batch cultures, the pyk mutant produced 3-fold higher levels of recombinant protein when grown on glucose as carbon source. Experimental measurements
and theoretical analysis show that the higher protein yield of the mutant is not due to removal of an acetate-associated inhibition
of expression or gene dosage or protein stability but a much lower acetate production in the mutant allows for a greater fraction
of carbon intake to be directed to protein synthesis. 相似文献
5.
笔者所在实验室前期筛选到1株产脂肪酶粘质沙雷氏菌,克隆其脂肪酶基因,构建重组枯草芽胞杆菌Bacillus subtilis 168/pMA5-lipA,成功实现了来源于粘质沙雷氏菌的脂肪酶基因在枯草芽胞杆菌中的表达。基于以上工作基础上,对B.subtilis 168/pMA5-lipA进行了摇瓶水平上的产酶发酵优化。首先通过单因素和正交试验确定了有利于产脂肪酶的最佳培养基成分,并对发酵条件进行了优化。结果表明:优化后的培养基组分为蔗糖35 g/L,玉米浆27.5 g/L,(NH4)2SO41.25 g/L,CaCl24 g/L,pH 7.0。在最优发酵培养基的条件下,37℃、160 r/min摇床培养33 h,每毫升发酵液中重组菌脂肪酶酶活可达98.6 U,是优化前的3倍。 相似文献
6.
Şahin Burcu Öztürk Sibel Çalık Pınar Özdamar Tunçer H. 《Bioprocess and biosystems engineering》2015,38(10):1855-1865
Bioprocess and Biosystems Engineering - Defined and semi-defined medium-based feeding strategies were developed to enhance recombinant human growth hormone (rhGH) production by Bacillus subtilis... 相似文献
7.
Antti Vuolanto Niklas von Weymarn Janne Kerovuo Heikki Ojamo Matti Leisola 《Biotechnology letters》2001,23(10):761-766
Bacillus subtilis BD170, harboring a plasmid pGT44[phyC] carrying the phytase gene (phyC) and a phosphate-depletion inducible pst-promoter, was grown in a 2 l bioreactor. Using a controlled feeding of glucose, high cell densities of 32 and 56 g dry cell weight l–1 were achieved with peptone and yeast extract, respectively, as the complex nitrogen sources in a semi-defined growth medium. The fed-batch protocol was applied to production of recombinant phytase and a high extracellular phytase activity (48 U ml–1) was reached with peptone. Although the yeast extract feeding resulted in a higher cell density, it was unsuitable as a medium component for phytase expression due to its relatively high phosphate content. 相似文献
8.
Medium optimization for the production of thermal stable beta-glucanase by Bacillus subtilis ZJF-1A5 using response surface methodology 总被引:1,自引:0,他引:1
Polysaccharides, such as barley flour, dextrin and soluble starch, were better carbon sources than monosaccharides and disaccharides, such as glucose and maltose, for cell growth of Bacillus subtilis ZJF-1A5 and beta-glucanase production. beta-Glucanase produced by B. subtilis ZJF-1A5 was associated partially with cell growth and increased significantly when cells entered stationary phase; yeast extract was the best nitrogen source, followed by soybean flour. All inorganic nitrogen sources chosen in the experiments were not favorable for cell growth and enzyme production. A fractional factorial design (2(6-2)) was applied to elucidate medium components that significantly affect beta-glucanase production. The concentration of barley flour, corn flour and soybean flour in medium were significant factors. The steepest ascent method was used to locate the optimal domain and a central composite design was used to estimate the quadratic response surface from which the factor levels for maximum production of beta-glucanase were determined. The composition of fermentation medium optimized with response surface methodology was (g/l): barley flour, 63.5; corn flour, 44.8; KH2PO4, 1.0; MgSO4 x 7H2O, 0.1; CaCl2, 0.1. beta-Glucanase activity was 251 U/ml at 48 h using optimized medium, 1.4 times higher than that in original medium. 相似文献
9.
Tunçer H. Özdamar Birgül Şentürk Özge Deniz Yilmaz Güzide Çalık Eda Çelik Pınar Çalık 《Biotechnology progress》2009,25(1):75-84
We demonstrate for the first time, an expression system mimicking serine alkaline protease synthesis and secretion, producing native form of human growth hormone (hGH) from Bacillus subtilis. A hybrid‐gene of two DNA fragments, i.e., signal (pre‐) DNA sequence of B. licheniformis serine alkaline protease gene (subC) and cDNA encoding hGH, were cloned into pMK4 and expressed under deg‐promoter in B. subtilis. Recombinant‐hGH (rhGH) produced by B. subtilis carrying pMK4::pre(subC)::hGH was secreted. N‐terminal sequence and mass spectrometry analyses of rhGH confirm the mature hGH sequence, and indicate that the signal peptide was properly processed by B. subtilis signal‐peptidase. The highest rhGH concentration was obtained at t = 32 h as CrhGH = 70 mg L?1 with a product yield on substrate YrhGH/S = 9 g kg?1, in a glucose based defined medium. Fermentation characteristics and influence of hGH gene on the rhGH production were investigated by comparing B. subtilis carrying pMK4::pre(subC)::hGH with that of carrying merely pMK4. Excreted organic‐acid concentrations were higher by B. subtilis carrying pMK4::pre(subC)::hGH, whereas excreted amino‐acid concentrations were higher by B. subtilis carrying pMK4. The approach developed is expected to be applicable to the design of expression systems for heterologous protein production from Bacillus species. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
10.
11.
In this paper, the possibility of using a mutation of ftsZ as a pseudo-spore mutant is investigated. ftsZ, which is essential for cell division and sporulation of Bacillus subtilis, was placed under the spac promoter, which is inducible with isopropyl thiogalactose (IPTG). Cell growth of the ftsZ mutant and its β-galactosidase activity under the aprE promoter were compared with the wild type. In the presence of 1 mM IPTG, cell growth of the ftsZ mutant was almost the same as that of the wild type and its sporulation frequency was slightly lower than that of the wild type. However, under uninduced conditions, cell growth of ftsZ mutant was severely impaired. When induced with 0.2 mM IPTG, the ftsZ mutant showed about 13 times higher β-galactosidase activity than the wild type. When the ftsZ mutant was used for secretory production of subtilisin, only three times higher extracellular subtilisin activity was measured, compared with the wild type. By real-time PCR investigation, it was revealed that the ftsZ mutant intracellular mRNA level for subtilisin was more than 16 times higher, compared with the wild type. However, it appears that the secretion pathway is somewhat damaged in the ftsZ mutant. These results suggest that the cell division mutant can also be used like a sporulation mutant to produce recombinant proteins, with a precise control of cell growth and induction. 相似文献
12.
We constructed strains of Bacillus subtilis which produced very low levels of extracellular proteases. These strains carried insertion or deletion mutations in the subtilisin structural gene (apr) which were constructed in vitro by using the cloned gene. The methods used to construct the mutations involved the use of a plasmid vector which allowed the selection of chromosomal integrates and their subsequent excision by homologous recombination to effect replacement of the chromosomal apr gene by a derivative carrying an inactivating insert with a selectable marker (a cat gene conferring chloramphenicol resistance). The strains produced no subtilisin, no detectable extracellular metalloprotease activity, and residual extracellular serine protease levels as low as 0.5% of that of the standard strain from which they were derived. The strains proved to be superior host strains for the production of staphylococcal protein A, accumulating higher levels of intact protein than do previously available B. subtilis strains. 相似文献
13.
Yu. M. Kirillova E. O. Mikhailova N. P. Balaban A. M. Mardanova G. N. Rudenskaya S. V. Kostrov M. R. Sharipova 《Microbiology》2006,75(2):136-141
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosyntheis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5–1%, gelatin at concentrations of 0.5–1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V–VII stages of sporulation). 相似文献
14.
By systematic investigation, glutamate and a mixture of metal ions were identified as factors limiting the production of nattokinase in Bacillus subtilis. Consequently, in medium supplemented with these materials, the recombinant strain secreted 4 times more nattokinase (260 mg l−1) than when grown in the unsupplemented medium. 相似文献
15.
Kirillova IuM Mikhaĭlova EO Balaban NP Mardanova AM Rudenskaia GN Kostrov SV Sharipova MR 《Mikrobiologiia》2006,75(2):172-178
The effect of the components of the nutrient medium on growth and production of the Bacillus intermedius subtilisin-like serine proteinase by the recombinant strain Bacillus subtilis AJ73(pCS9) was studied. The production of proteinase was found to be dependent on the composition of the nutrient medium and showed two peaks, at the 28th and 48th h of growth. The concentrations of the main components of the nutrient medium (peptone and inorganic phosphate) optimal for the biosynthesis of subtilisin-like serine proteinase at the 28th and 48th h of growth were determined in factorial experiments. Complex organic substances, casein at concentrations of 0.5-1%, gelatin at concentrations of 0.5-1%, and yeast extract at a concentration of 0.5%, stimulated the production of subtilisin-like serine proteinase by the recombinant strain. The study of the sporulation dynamics in this strain showed that the proteinase peaks at the 28th and 48th h of growth correspond, respectively, to the initial stage of sporulation and to the terminal stages of endospore formation (V-VII stages of sporulation). 相似文献
16.
Mezghanni H Khedher SB Tounsi S Zouari N 《Preparative biochemistry & biotechnology》2012,42(3):267-278
In order to overproduce biofungicides agents by Bacillus amyloliquefaciens BLB371, a suitable culture medium was optimized using response surface methodology. Plackett-Burman design and central composite design were employed for experimental design and analysis of the results. Peptone, sucrose, and yeast extract were found to significantly influence antifungal activity production and their optimal concentrations were, respectively, 20 g/L, 25 g/L, and 4.5 g/L. The corresponding biofungicide production was 250 AU/mL, corresponding to 56% improvement in antifungal components production over a previously used medium (160 AU/mL). Moreover, our results indicated that a deficiency of the minerals CuSO(4), FeCl(3) · 6H(2)O, Na(2)MoO(4), KI, ZnSO(4) · 7H(2)O, H(3)BO(3), and C(6)H(8)O(7) in the optimized culture medium was not crucial for biofungicides production by Bacillus amyloliquefaciens BLB371, which is interesting from a practical point of view, particularly for low-cost production and use of the biofungicide for the control of agricultural fungal pests. 相似文献
17.
A procedure for high-yield spore production by Bacillus subtilis 总被引:1,自引:0,他引:1
Monteiro SM Clemente JJ Henriques AO Gomes RJ Carrondo MJ Cunha AE 《Biotechnology progress》2005,21(4):1026-1031
Bacillus subtilis spores have a number of potential applications, which include their use as probiotics and competitive exclusion agents to control zoonotic pathogens in animal production. The effect of cultivation conditions on Bacillus subtilis growth and sporulation was investigated in batch bioreactions performed at a 2-L scale. Studies of the cultivation conditions (pH, dissolved oxygen concentration, and media composition) led to an increase of the maximum concentration of vegetative cell from 2.6 x 10(9) to 2.2 x 10(10) cells mL(-)(1) and the spore concentration from 4.2 x 10(8) to 5.6 x 10(9) spores mL(-)(1). A fed-batch bioprocess was developed with the addition of a nutrient feeding solution using an exponential feeding profile obtained from the mass balance equations. Using the developed feeding profile, starting at the middle of the exponential growth phase and finishing in the late exponential phase, an increase of the maximum vegetative cell concentration and spore concentration up to 3.6 x 10(10) cells mL(-)(1) and 7.4 x 10(9) spores mL(-)(1), respectively, was obtained. Using the developed fed-batch bioreaction a 14-fold increase in the concentration of the vegetative cells was achieved. Moreover, the efficiency of sporulation under fed-batch bioreaction was 21%, which permitted a 19-fold increase in the final spore concentration, to a final value of 7.4 x 10(9) spores mL(-)(1). This represents a 3-fold increase relative to the highest reported value for Bacillus subtilis spore production. 相似文献
18.
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS. 相似文献
19.
Bacillus subtilis (B. subtilis) is widely accepted as an excellent host cell for the secretory production of recombinant proteins. In this study, a shuttle vector was constructed by fusion of Staphylococcus aureus (S. aureus) plasmid pUB110 with Escherichia coli (E. coli) plasmid pUC18 and used for the expression of nattokinase in B. subtilis. The pUB110/pUC-based plasmid was found to exhibit high structural instability with the identification of a DNA deletion between two repeated regions. An initial attempt was made to eliminate the homologous site in the plasmid, whereas the stability of the resulting plasmid was not improved. In an alternative way, the pUC18-derived region in this hybrid vector was replaced by the suicidal R6K plasmid origin of E. coli. As a consequence, the pUB110/R6K-based plasmid displayed full structural stability, leading to a high-level production of recombinant nattokinase in the culture broth. This was mirrored by the detection of a very low level of high molecular weight DNAs generated by the plasmid. Moreover, 2-fold higher nattokinase production was obtained by B. subtilis strain carrying the pUB110/R6K-based plasmid as compared to the cell with the pAMbeta1-derived vector, a plasmid known to have high structural stability. Overall, it indicates the feasibility of the approach by fusing two compatible plasmid origins for stable and efficient production of recombinant nattokinase in B. subtilis. 相似文献
20.
Wenzel M Müller A Siemann-Herzberg M Altenbuchner J 《Applied and environmental microbiology》2011,77(18):6419-6425
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application. 相似文献