首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

2.
The appearance of sialoconjugates in developing rat kidney glomeruli was studied using lectins and neuraminidase-lectin staining sequences. In the early S-shaped bodies, binding of Maclura pomifera (MPA; specific for galactosaminyl residues of glycoconjugates) could be detected in the presumptive podocyte layer at the apex of these cells, but notably no binding of lectins specific for sialic acid could be seen. During further morphologic maturation of the S-shaped bodies, binding of Limax flavus (LFA; specific for sialic acids) and Triticum vulgaris (WGA; specific for sialic acids and N-acetyl glucosaminyl moieties) appeared at the apex of podocytes and extended subsequently along the lateral membranes to the base of these cells. In morphologically mature glomeruli, LFA stained not only the base of podocytes but also glomerular basement membranes. WGA and MPA bound to the capillary endothelia as well as to the structures bound by LFA. The intensity of WGA binding increased considerably after 5 days of postnatal life, seemingly in parallel with the decrease and ultimate disappearance of MPA binding. In addition to showing individual appearance pattern for various lectin binding sites, these studies give evidence of previously unrecognized postnatal completion of the components of glomerular filtration barrier.  相似文献   

3.
Summary The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

4.
Abstract. Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-I1 reacted only with spermatozoa. PNA, GSA-11, SBA, VVA, BPA, RCA-I, and RCA-I1 reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spematozoa in increasing order of intensity. ConA, SUC. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, IJEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-I1 selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

5.
In order to investigate the usefulness of lectin histochemistry to detail nephronal segmentation we used 12 different biotinylated lectins (Con-A, DBA, GS-I, LCA, PNA, PWN, RCA-I, RCA-II, SWGA, SBA, UEA-I, and WGA) and Avidin-Biotin-Peroxidase (ABC) system on formalin-fixed and paraffin-embedded rabbit kidney sections. Each lectin, except UEA-I which did not stain any nephron structure, shows a different staining pattern along the nephron. Con-A, LCA, and RCA-I display a diffuse staining, while BS-I, RCA-II, SWGA, PWN, DBA, SBA and PNA are selective markers for specific nephron tracts. Furthermore, it is possible, according to the WGA binding pattern, to differentiate the convoluted part of the proximal tubule into two parts, named Segment A and Segment B. Lectin histochemistry on formalin-fixed and paraffin-embedded rabbit kidney sections displays a specific binding pattern along the rabbit nephron and shows interesting morphofunctional correlations.  相似文献   

6.
Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-II reacted only with spermatozoa. PNA, GSA-II, SBA, VVA, BPA, RCA-I, and RCA-II reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spermatozoa in increasing order of intensity. ConA, Suc. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, UEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-II selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

7.
C Ertl  K H Wrobel 《Histochemistry》1992,97(2):161-171
In the present study the distribution of various sugar residues in the cells of the male gonad during postnatal organogenesis was examined employing eight lectin-horseradish peroxidase conjugates (BS-I, ConA, DBA, PNA, RCA-I, SBA, UEA-I, WGA) on paraffin-embedded testicular tissue. The tissue was obtained from bull calves and young bulls of recorded age (4, 8, 16, 20, 25, 30, 40 and 52 weeks) and two adult bulls. During the whole observation period, lectin affinity in the developing testicular tubules was restricted to the germ cell line, while the Sertoli cells and their precursors remained completely unstained. DBA, a lectin with specific affinity to alpha-D-GalNAc, served as a selective marker for prespermatogonia (PSG), the only precursors of bovine spermatogonia until the onset of spermatogenesis at week 30. alpha-D-GalNAc, detected in the PSG Golgi zone and its vicinity, seems to play an important role during PSG proliferation and migration in the prepuberal testis. Concomitant with the differentiation of PSG into spermatogonia, the binding intensity of DBA to the Golgi zone of these cells decreased. After the gradual onset of spermatogenesis, the lectins revealed staining of Golgi complexes of most germ cell stages. Glycosylation of the cell components takes place in the Golgi complex, which explains the strong affinity of the lectins to this cell compartment. Inner and outer membrane of the acrosomal complex of spermatids, especially during Golgi and cap phase of spermiogenesis, were intensely stained with PNA, RCA-I and SBA. This staining disappeared in the maturation phase at the latest and indicates a role of terminal D-Gal-(beta 1----3)-D-GalNAc, D-Gal and D-GalNAc during the formation of the sperm head and intraepithelial orientation of the spermatid. Other parts of the spermatid, such as the anulus and the cytoplasmic droplet, exhibited D-Gal, D-GlcNAc or sialic acid and D-GalNAc. In the intertubular tissue BS-I, RCA-I and UEA-I bound to vascular endothelia. Components of the intertubular extracellular matrix were stained with ConA (alpha-D-Man), RCA-I (D-Gal), UEA-I (alpha-L-Fuc) and WGA (D-GlcNAc or sialic acid).  相似文献   

8.
We have examined the pattern of binding of eleven lectins--BSL-II, WGA, LPA, Con A, DBA, SBA, LTA, UEA-I, MPA, PNA, and RCA-I, with specificity for a range of saccharides, to postimplantation mouse embryos from 6 to 8 days of gestation. The lectins were used to stain sections of ethanol-fixed paraffin-embedded and formaldehyde-fixed gelatin-embedded embryonic material. Our observations reveal a complex pattern of lectin binding to both cell surfaces and cytoplasm. Many of the lectins bind particularly to the outer surface of visceral endoderm (e.g., DBA, WGA, SBA, and RCA-I) and to the surface of the proamniotic cavity (e.g., RCA-I, PNA, and WGA). In the newly formed mesenchyme of primitive-streak-stage embryos, galactose and N-Ac-neuraminic acid are present but lectins with specificity for other sugars either did not bind to the cells or bound only in small amounts.  相似文献   

9.
The binding of 20 fluorescein isothiocyanate (FITC)-labeled lectins to various portions of the pregnant and non-pregnant murine oviduct and uterus was studied by fluorescence microscopy. Five lectins (from Ricinus communis (RCA-I), Maclura pomifera (MPA), Triticum vulgare (wheat germ-WGA), Bauhinia purpurea (BPA), and Ulex europeus (UEA-I] reacted differentially with the epithelium of pregnant as compared with the non-pregnant uterus. The binding of RCA-I, MPA and WGA delineated pregnancy-related changes in the distal oviduct and colliculus tubaris. WGA recognized also pregnancy related changes in the proximal oviduct. The reactivity of the remaining 15 lectins did not distinguish the pregnant and non-pregnant oviduct and uterus, although some of them served to identify specific components of the mouse genital tract. Thus, Soybean lectin (SBA) reacted almost exclusively with the colliculus tubaris. UEA-I alone reacted exclusively with the epithelium of the non-pregnant uterus. RCA-II reacted preferentially with the epithelium of the oviduct and uterus as compared with its weak reactivity with the stroma. Two lectins (from Pisum sativum and Lens culinaris) reacted selectively with stromal cells of the uterus and oviduct. Present data indicate that the differential binding properties of these FITC-labeled lectins can be exploited to identify certain components of the mouse oviduct and uterus and to indicate changes in the cell surface and/or cytoplasm in these structures during pregnancy.  相似文献   

10.
Lectin histochemistry of human placenta   总被引:1,自引:0,他引:1  
Abstract. The human placenta was studied histochemically using 23 fluorescein-isothiocyanate-labeled lectins Distinct patterns of staining, as well as some differences between first-trimester and term placenta, were discerned. Eleven lectins (HPA, VVA, BPA, HAA, SBA, PNA, GSA-I, MPA, RCA-I, RCA-II, and UEA-I) did not react with the trophoblast. Two lectins (LCA and PEA) reacted with the trophoblast of first-trimester placenta but not with the trophoblast of third-trimester placenta. The remaining ten lectins (ConA, Suc.ConA, WGA, GSA-II, LAA, STA, DBA, LBA, PHA-E, and PHA-L) reacted with the trophoblast of both first- and third-trimester placenta, and two of these lectins (ConA and Suc.ConA) reacted preferentially with the syncytiotrophoblast. Five lectins (LAA, STA, DBA, GSA-II, and LBA) reacted with nuclei of the cytotrophoblast. The nuclei of some stromal and syncytiotrophoblastic cells were also reactive. Eighteen lectins reacted with the trophoblastic basement membrane, and all reacted with Hofbauer cells and the stroma of the villi. Latin binding was influenced by the mode of fixation and tissue processing. These data show that some lectins can be used to identify components of the placental villi (e.g., basement, membrane) to characterize differences between the first- and third-trimester trophoblast, and to distinguish the cytotrophoblast from the syncytiotrophoblast.  相似文献   

11.
M Nakai  Y Tatemoto  H Mori  M Mori 《Histochemistry》1985,83(5):455-463
The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively strange lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

12.
Summary A panel of 10 FITC-labelled lectins (MPA, PNA, ConA, DBA, SBA, RCA-120, WGA, UEA, GS-I, GS-II) was applied to cryosections of seven specimens of normal urothelium. Seven of the lectins (MPA, ConA, RCA, WGA, UEA, GS-I and GS-II) showed a pattern of increasing fluorescence intensity from basal to superficial cells of the urothelium whereas PNA, DBA and SBA showed more uniform binding throughout the urothelium. Urothelial cell suspensions labelled with FITC-lectins were studied by flow cytometry to quantify the variation in binding to different cells types. Three cellular subpopulations were identified in normal urothelium on the basis of their optical properties. Fluorescence intensity due to specific lectin binding was then measured separately for each subpopulation. Although there was some variation among individual cases, a general pattern emerged in this small series. WGA, RCA, and GS-II bind in large quantities to all urothelial cells while PNA, SBA, ConA and DBA show little binding. MPA, RCA, UEA and GS-I showed the most marked increase in fluorescence intensity from basal to superficial cells as observed microscopically and quantified by flow cytometry.  相似文献   

13.
To identify lectin binding sites and to determine if lectin binding patterns change with age in developing neonatal porcine uterine tissues, gilts (n = 3/day) were hysterectomized on Day 0 (birth), 7, 14, 28, 42, or 56. Lectin binding was visualized in Bouin's-fixed uterine tissues with seven biotinylated lectins (ConA, DBA, PNA, RCA-I, SBA, UEA-I, and WGA) and avidin-peroxidase staining procedures. Lectin specificities were demonstrated by pre-incubating lectins with appropriate inhibitory sugars (0.2 M). Staining intensity was evaluated visually (absent, weak, moderate, or strong) for three endometrial tissues; luminal epithelium, glandular epithelium, and stroma. Staining intensities for DBA, PNA, SBA, and WGA were not affected by neonatal age. Staining with these lectins was greater in uterine epithelium (moderate or strong) than in stroma (weak). In contrast, binding patterns for ConA, UEA-I, and RCA-I were affected by neonatal age. Strong epithelial staining associated with ConA binding was observed on all days, whereas stromal ConA staining decreased in intensity from moderate to weak after Day 14. Epithelial staining with UEA-I increased from moderate to strong after Day 28, whereas stromal UEA-I staining decreased from moderate to weak after day 28. Staining with RCA-I was homogeneous for luminal epithelium and stroma but variegated for glandular epithelium on and after Day 7. These observations indicate that a variety of lectin binding sites are present in developing neonatal porcine endometrial tissues and that developmentally related alterations in the distribution and/or orientation of glycoconjugates containing alpha-D-mannose, beta-D-galactose, beta-D-acetyl-N-galactosamine, and alpha-L-fucose residues occur between birth and Day 56 as these tissues mature.  相似文献   

14.
Glomeruli within the main olfactory bulb (MOB) are known as areas of synapse formation between axon terminals of olfactory neurons in the olfactory epithelium and dendrites of the first relay neurons (mitral and tufted cells) in the MOB, so that they serve as functional units in olfaction. We examined expression patterns of glycoconjugates in the glomeruli of the hamster MOB by lectin histochemistry using 21 biotinylated lectins. Thirteen lectins, WGA, s-WGA, DSL, DBA, SBA, WA, SJA, RCA-I, PNA, ECL, UEA-I, PSA and LCA, showed differential binding patterns among the glomeruli. To evaluate these differential binding patterns of lectins, we analysed staining intensity of each of the 13 lectins on the level of individual glomeruli by image analysis, and classified staining intensity into five grades (negative, 1+, 2+, 3+, 4+) on the basis of results obtained. This classification enables us to make detailed comparison among individual glomeruli. We further analysed the grade of staining intensity of each of the 13 lectins in the same glomerulus in adjacent serial sections by image analysis, and found that individual glomeruli varied in combination of grades of staining intensity and kinds of lectins. These results indicate that glycoconjugates are expressed heterogeneously in individual glomeruli, and that heterogeneous expression may contribute to the topographic organization of the primary olfactory pathway.  相似文献   

15.
The lectin-binding patterns in Auerbach's plexus in the distal portions of the rat colon from 15- to 21-day-old foetuses, newborns, and adults were examined by light and electron microscopy using 16 different lectins (ConA, RCA-1, WGA, PNA, SBA, UEA-1, DBA, LCA, PHA-L, DSA, GS-1, VVA, MPA, BPA, MAA, and PSA). The binding of ConA was shown to increase after day 19 of gestation in parallel with differentiation of Auerbach's plexus, whereas the staining intensity for DSA and RCA-1 increased after day 17 of gestation in accordance with the appearance of the plexus. At the electron microscopical level, DSA binding sites were observed to be localized mainly in the plasma membrane, Golgi apparatus, and nuclear membrane of nerve cells. Positive sites were also observed in the axolemma and in the plasma membrane of nerve cell processes, Schwann cells, and the surrounding smooth muscle cells. PSA, PHA-L, LCA, and WGA showed constant staining during the development after day 15 of gestation. Other lectins, most of which are specific for O-glycosidic mucin-type sugar residues, were essentially negative throughout the developmental stages. Moreover, N-glycanase digestion significantly diminished the positive reactions. N-linked oligosaccharides may thus play important roles in the development and maturation of the Auerbach's plexus, and may be involved in the developmental defect of the plexus, e.g. as occurs in Hirschsprung's disease.  相似文献   

16.
Summary The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats, were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively stranges lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

17.
The lectin-binding patterns in Auerbach's plexus in the distal portions of the rat colon from 15- to 21-day-old foetuses, newborns, and adults were examined by light and electron microscopy using 16 different lectins (ConA, RCA-1, WGA, PNA, SBA, UEA-1, DBA, LCA, PHA-L, DSA, GS-1, VVA, MPA, BPA, MAA, and PSA). The binding of ConA was shown to increase after day 19 of gestation in parallel with differentiation of Auerbach's plexus, whereas the staining intensity for DSA and RCA-1 increased after day 17 of gestation in accordance with the appearance of the plexus. At the electron microscopical level, DSA binding sites were observed to be localized mainly in the plasma membrane, Golgi apparatus, and nuclear membrane of nerve cells. Positive sites were also observed in the axolemma and in the plasma membrane of nerve cell processes, Schwann cells, and the surrounding smooth muscle cells. PSA, PHA-L, LCA, and WGA showed constant staining during the development after day 15 of gestation. Other lectins, most of which are specific for O-glycosidic mucin-type sugar residues, were essentially negative throughout the developmental stages. Moreover, N-glycanase digestion significantly diminished the positive reactions. N-linked oligosaccharides may thus play important roles in the development and maturation of the Auerbach's plexus, and may be involved in the developmental defect of the plexus, e.g. as occurs in Hirschsprung's disease.  相似文献   

18.
Lectin histochemical studies were performed on frozen and paraffin-embedded brain tissue sections from six cases of galactosylceramide lipidosis (i.e., globoid cell leukodystrophy, or Krabbe's disease) in Twitcher mice and one case of canine infantile GM1-gangliosidosis. The globoid cells in Krabbe's disease stained with Ricinus communis agglutinin-I (RCA-I), peanut agglutinin (PNA), and Bandeirea simplicifolia agglutinin-I (BS-I) in frozen sections. However, paraffin sections and frozen sections pretreated with chloroform-methanol or xylene, from the same animals, stained with Concanavlia ensiformis agglutinin (ConA), wheat germ agglutinin (WGA), and succinylated-WGA (S-WGA), in addition to staining with RCA-I, PNA, and BS-I. The affected neurons of canine infantile GM1-gangliosidosis stained only with RCA-I in frozen sections. In paraffin sections, however, these cells were negative with RCA-I but positive with BS-I, ConA, Dolichos biflorus agglutinin (DBA), soybean agglutinin (SBA) and Ulex europaeus agglutinin (UEA-I) in paraffin sections. These results indicate that in paraffin processing of glycolipid storage disease tissue, some lectin receptors are lost and others are unmasked. The retained receptors can be stained with specific lectins and could serve as markers to characterize and differentiate among the various glycolipid storage diseases.  相似文献   

19.
Carbohydrate binding proteins, known as lectins, bind to specific sugar groups on most membranes. We used fluorescent and light microscopy to study the interaction of various lectins with the membranes of microglia cultured from neonatal rat or fetal mouse cerebral cortices. Microglia stained intensely with GS-1, RCA, WGA, and ConA and slightly with DBA, UEA, BPA, and SBA. No staining was seen with GS-2, MPA, or PNA. Staining was specific for microglia in the mixed glial cultures and was dose dependent. In addition, microglial lectin binding could be reduced or blocked by competitive inhibition using specific sugars. Treatment of the microglia with agents such as dimethylsulfoxide (DMSO), interleukin-1 (IL-1), interferon (IFN), or lipopolysaccharide (LPS) did not eliminate lectin staining, although the degree of staining was altered. Positive staining of the microglia was also associated with a functional change for at least one lectin, i.e., ConA. Superoxide anion production by microglia was increased in the presence of ConA. Overall, binding of the lectins GS-1, RCA, WGA, and ConA can be used as an identifying tool for microglia in glial cultures, but intensity of staining varies depending on their functional state.  相似文献   

20.
The distribution of structural and secretory glycoconjugates in the gastric region of metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) histochemical staining method using seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin I, UEA-I; and wheat germ agglutinin, WGA). Throughout the larval period to stage 60, the epithelium consisting of surface cells and gland cells was stained in various patterns with all lectins examined, whereas the thin layer of connective tissue was positive only for RCA-I. At the beginning of metamorphic climax, the connective tissue became stained with Con A, SBA, and WGA, and its staining pattern varied with different lectins. The region just beneath the surface cells was strongly stained only with RCA-I. With the progression of development, both the epithelium and the connective tissue gradually changed their staining patterns. The surface cells, the gland cells, and the connective tissue conspicuously changed their staining patterns, respectively, for Con A and WGA; for Con A, PNA, RCA-I, SBA, and WGA; and for Con A, RCA-I, and WGA. At the completion of metamorphosis (stage 66), mucous neck cells became clearly identifiable in the epithelium, and their cytoplasm was strongly stained with DBA, PNA, RCA-I, and SBA. These results indicate that lectin histochemistry can provide good criteria for distinguishing among three epithelial cell types, namely, surface cells, gland cells, and mucous neck cells, and between adult and larval cells of each type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号