首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
LEAFY controls floral meristem identity in Arabidopsis.   总被引:96,自引:0,他引:96  
The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.  相似文献   

3.
4.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

5.
Ma YP  Fang XH  Chen F  Dai SL 《Plant cell reports》2008,27(4):647-654
FLO/LFY homologue genes were initially characterized as floral meristem identity genes and play a key role in flower development among diverse species. The inflorescence organization of chrysanthemum differs from typical dicotyledons such as Arabidopsis and Antirrhinum as clear sepals are absent, and instead, a pappus, a rudimentary sepal, is formed. To understand the mechanism of reproduction of chrysanthemum at the molecular level, DFL, a FLORICAULA/LEAFY homologous gene, was cloned from Dendranthema lavandulifolium, which is one of the original species of chrysanthemum. The DFL gene consists of a 1,236-bp open reading frame and encodes a putative protein of 412 amino acids, which is 63% identical to LFY and 70% to FLO. The expression patterns of DFL during the flower development were analyzed, and RT-PCR results showed that DFL was strongly expressed in the flower bud. In situ hybridization experiments showed that it is strongly expressed in the inflorescence bract, petal and stamen primordial tissues throughout the inflorescence development. Its expression signals were also detected in stems, leaf primordial tissues and developing inflorescence bracts.  相似文献   

6.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

7.
The small genome size of Arabidopsis thaliana allows the isolation of genes expressed in specific tissues and under controlled conditions by the differential screening of a genomic library, as has been shown previously for yeast and Drosophila. cDNA probes, based on poly(A)+ mRNA isolated from different Arabidopsis organs, were used in colony hybridizations with 1145 randomly chosen genomic clones, representing 27,000 kb of Arabidopsis DNA. Twenty percent of the clones containing low-copy-number sequences hybridized with one or more of the cDNA probes that were synthesized from mRNA isolated from leaves, stems, seed pods, inflorescences, callus tissue, and light-grown and dark-grown plants. Comparison of the colony hybridizations led to the identification of a large variety of clones which contain differentially expressed genes. The pattern of expression was confirmed by Northern analysis. The advantage of the described method is that it yields directly genomic sequences that contain specifically expressed or induced genes. In particular, it circumvents the construction and differential screening of cDNA libraries for every tissue or environmental parameter to be analyzed.  相似文献   

8.
We constructed a high-efficiency expression library from Arabidopsis cDNA clones by introducing a poly (dC) stretch at the 5' end of the clones. This library enables the synthesis of proteins from all the cDNA clones present. We have screened the high-efficiency expression library with antibodies raised against total proteins from Arabidopsis plasmalemma and tonoplast. With the positive clones, we have constructed two cDNA ordered libraries enriched in genes encoding plasmalemma (522 clones) and tonoplast proteins (594 clones). Partial sequencing of both libraries shows that a high proportion (47%) of the clones encoded putative membrane proteins, or membrane-associated proteins. When sequenced, 55% of the cDNAs were new EST sequences for Arabidopsis, 26% were similar to genes present in other plants or organisms, and 29% were not referenced in any databank. Immunoscreening of the two cDNA ordered libraries with antibodies raised against proteins from Arabidopsis cells submitted to osmotic stress allows the selection of genes over- and under-expressed in stress conditions.  相似文献   

9.
10.
11.
12.
Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that Jointless (J), which encodes a MADS-box protein of the same clade than Short Vegetative Phase (SVP) and Agamous Like 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA--the orthologue of the Arabidopsis LEAFY (LFY) gene--shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the Single Flower Truss (SFT) gene, the tomato orthologue of Flowering Locus T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM.  相似文献   

13.
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and PNF interact with a subset of KNOTTED1-LIKE homeobox proteins including SHOOT MERISTEMLESS (STM). Genetic analyses show that these BLH proteins function with STM to specify flowers and internodes during inflorescence development. In this study, experimental evidence demonstrates that the specification of flower and coflorescence meristems requires the combined activities of FT-FD and STM. FT and FD also regulate meristem maintenance during inflorescence development. In plants with reduced STM function, ectopic FT and FD promote the formation of axillary meristems during inflorescence development. Lastly, gene expression studies indicate that STM functions with FT-FD and AGAMOUS-LIKE 24 (AGL24)-SUPPRESSOR OF OVEREXPRESSION OF CONTANS1 (SOC1) complexes to up-regulate flower meristem identity genes during inflorescence development.  相似文献   

14.
15.
An AP1/AGL9 group of MADS box gene, OMADS1, with extensive homology to the Arabidopsis AGAMOUS-like 6 gene (AGL6) was characterized from orchid (Oncidium Gower Ramsey). OMADS1 mRNA was detected in apical meristem and in the lip and carpel of flower. Yeast two-hybrid analysis indicated that OMADS1 is able to strongly interact with OMADS3, a TM6-like protein that was involved in flower formation and floral initiation in orchid. Transgenic Arabidopsis and tobacco ectopically expressed OMADS1 showed similar novel phenotypes by significantly reducing plant size, flowering extremely early, and losing inflorescence indeterminacy. In addition, homeotic conversion of sepals into carpel-like structures and petals into staminoid structures were also observed in flowers of 35S::OMADS1 Arabidopsis. This result indicated that OMADS1 was involved in floral formation and initiation in transgenic plants. Further analysis indicated that the expression of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and flower meristem identity genes LEAFY (LFY), APETALA1 (AP1) was significantly up-regulated in 35S::OMADS1 transgenic Arabidopsis plants. Furthermore, ectopic expression of OMADS1 rescued late-flowering phenotype in gi-1, co-3 but not for ft-1 and fwa-1 mutants. These results supported that ectopic expression of OMADS1 influenced flower transition and formation by acting as an activator for FT and SOC1 in Arabidopsis.  相似文献   

16.
17.
Tzeng TY  Hsiao CC  Chi PJ  Yang CH 《Plant physiology》2003,133(3):1091-1101
Two AGL2-like MADS-box genes, Lily MADS Box Gene (LMADS) 3 and LMADS4, with extensive homology of LMADS3 to the Arabidopsis SEPALLATA3 were characterized from the lily (Lilium longiflorum). Both LMADS3 and LMADS4 mRNA were detected in the inflorescence meristem, in floral buds of different developmental stages, and in all four whorls of the flower organ. LMADS4 mRNA is also expressed in vegetative leaf and in the inflorescence stem where LMADS3 expression is absent. Transgenic Arabidopsis, which ectopically expresses LMADS3, showed novel phenotypes by significantly reducing plant size, flowering extremely early, and loss of floral determinacy. By contrast, 35S::LMADS4 transgenic plants were morphologically indistinguishable from wild-type plants. The early-flowering phenotype in 35S::LMADS3 transgenic Arabidopsis plants was correlated with the up-regulation of flowering time genes FT, SUPPRESSOR OF OVEREXPRESSION OF CO 1, LUMINIDEPENDENS, and flower meristem identity genes LEAFY and APETALA1. This result was further supported by the ability of 35S::LMADS3 to rescue the late-flowering phenotype in gigantea-1 (gi-1), constans-3 (co-3), and luminidependens-1 but not for ft-1 or fwa-1 mutants. The activation of these flowering time genes is, however, indirect because their expression was unaffected in plants transformed with LMADS3 fused with rat glucocorticoid receptor in the presence of both dexamethasone and cycloheximide.  相似文献   

18.
19.
P J Gulick  J Dvorák 《Gene》1990,95(2):173-177
We present a novel technique for the enrichment of cDNA libraries to enhance the abundance of clones of differentially expressed genes. The technique is relatively simple, requires moderate quantities of poly(A) + RNA and results in preferential enrichment of clones derived from mRNAs that were of low abundance in their original population. This method was used to isolate cDNA clones of salt-stress-induced genes in the roots of Lophopyrum elongatum, a highly salt-tolerant wheatgrass. An excess of sonicated plasmid DNA from a cDNA library from nonstressed roots was hybridized in a formamide-phenol emulsion with inserts from a cDNA library of stressed roots. Clones that were more abundant in, or were unique to, the library of the stressed roots were recovered as double-stranded fragments by virtue of reconstituted restriction-enzyme-digested ends by ligating them to a plasmid vector. The resulting enriched library was screened by differential colony hybridization and clones of eleven different genes that were more strongly expressed in stressed roots than in controls were selected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号