首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms involved in the selective joining of appropriate 5' and 3' splice sites are still poorly understood in both constitutive and alternatively spliced genes. With two promoters associated with different exons, the myosin light-chain 1/3 gene generates two pre-mRNAs that also differ by the use of a pair of internal exons, 3 and 4, that are spliced in a mutually exclusive fashion. When the promoter upstream from exon 1 is used, only exon 4 is included. If the promoter upstream from exon 2 is used, only exon 3 is included. In an attempt to understand the molecular basis for the mutually exclusive behavior of these two exons and the basis of their specific selection, a number of minigene constructs containing exons 3 and 4 were tested in a variety of homologous or heterologous cis and trans environments. The results demonstrate that the mutually exclusive behavior of myosin light-chain exons 3 and 4 and selection between the two exons are cis regulated and are affected by the nature of the flanking sequences. Both exons competed for the common flanking 5' and 3' splice sites. Flanking exons were found that favored inclusion into mature mRNA of exon 3, exon 4, both, or neither, suggesting a specific cooperative interaction between certain 5' and 3' splice sites. Thus, alternative splicing of myosin light-chain 1/3 pre-mRNAs is regulated in cis by a hierarchy of compatibilities between pairs of 5' and 3' splice sites.  相似文献   

2.
3.
4.
5.
Structure of the murine complement factor H gene   总被引:3,自引:0,他引:3  
Factor H is a regulatory protein of the alternative pathway of complement activation comprised of 20 tandem repeating units of 60 amino acids each. A factor H cDNA clone was used to identify 17 genomic clones from a cosmid library. Four clones were selected for analysis of intron/exon junctions and 5' and 3' regions of the gene and for mapping of the exons. The factor H gene was found to be comprised of 22 exons. Each repeating unit is encoded by one exon, except the second repeat, which is coded by two exons; the leader sequence is encoded by a separate exon. The exons range in size from 77 to 210 base pairs (bp) and average 178 bp. They span a region of approximately 100 kilobases (kb) on chromosome 1. The leader sequence exon is 26 kb upstream of the first repeat exon, representing the largest intron. The other introns range in size from 86 bp to 12.9 kb, and the average intron size is 4.7 kb. Analysis of the genomic organization of the factor H gene has provided insight into the protein structure and will enable the construction of deletion mutants for functional studies.  相似文献   

6.
7.
8.
Genomic organization of human complement component C3   总被引:7,自引:0,他引:7  
K Y Fong  M Botto  M J Walport  A K So 《Genomics》1990,7(4):579-586
  相似文献   

9.
The molecular basis of the skipping of constitutive exons in many messenger RNAs is not fully understood. A well-studied example is exon 9 of the human cystic fibrosis transmembrane conductance regulator gene (CFTR), in which an abbreviated polypyrimidine tract between the branch point A and the 3' splice site is associated with increased exon skipping and disease. However, many exons, both in CFTR and in other genes and have short polypyrimidine tracts in their 3' splice sites, yet they are not skipped. Inspection of the 5' splice sites immediately up- and downstream of exon 9 revealed deviations from consensus sequence, so we hypothesized that this exon may be inherently vulnerable to skipping. To test this idea, we constructed a CFTR minigene and replicated exon 9 skipping associated with the length of the polypyrimidine tract upstream of exon 9. We then mutated the flanking 5' splice sites and determined the effect on exon skipping. Conversion of the upstream 5' splice site to consensus by replacing a pyrimidine at position +3 with a purine resulted in increased exon skipping. In contrast, conversion of the downstream 5' splice site to consensus by insertion of an adenine at position +4 resulted in a substantial reduction in exon 9 skipping, regardless of whether the upstream 5' splice site was consensus or not. These results suggested that the native downstream 5' splice site plays an important role in CFTR exon 9 skipping, a hypothesis that was supported by data from sheep and mouse genomes. Although CFTR exon 9 in sheep is preceded by a long polypyrimidine tract (Y(14)), it skips exon 9 in vivo and has a nonconsensus downstream 5' splice site identical to that in humans. On the other hand, CFTR exon 9 in mice is preceded by a short polypyrimidine tract (Y(5)) but is not skipped in vivo. Its downstream 5' splice site differs from that in humans by a 2-nt insertion, which, when introduced into the human CFTR minigene, abolished exon 9 skipping. Taken together, these observations place renewed emphasis on deviations at 5' splice sites in nucleotides other than the invariant GT, particularly when such changes are found in conjunction with other altered splicing sequences, such as a shortened polypyrimidine tract. Thus, careful inspection of entire 5' splice sites may identify constitutive exons that are vulnerable to skipping.  相似文献   

10.
11.
12.
13.
Connexin 45 is a gap junction protein that is prominent in early embryos and is widely expressed in many mature cell types. To elucidate its gene structure, expression, and regulation, we isolated mouse Cx45 genomic clones. Alignment of the genomic DNA and cDNA sequences revealed the presence of three exons and two introns. The first two exons contained only 5' untranslated sequences, while exon 3 contained the remaining 5' UTR, the entire coding region, and the 3' UTR. An RT-PCR with exon-specific primers was utilized to examine exon usage in F9 mouse embryonal carcinoma cells and adult mouse tissues. In all samples, PCR products amplified using exon 2/exon 3 or exon 3/exon 3 primer pairs were much more abundant than products produced using exon 1/exon 2 or exon 1/exon 3 primer pairs, suggesting that Cx45 mRNAs containing exon 1 were relatively rare compared with mRNAs containing the other exons. Rapid amplification of cDNA ends (5'-RACE) was performed using antisense primers from within exon 3 and template RNA prepared from F9 cells or from adult mouse kidney. We obtained multiple RACE products from both templates, including products that contained all three exons and were spliced identically to the cDNA. However, clones were also isolated (from kidney) that began within the region previously identified as intron 1 and continued upstream with a sequence identical to the cDNA, including splicing to exon 3. These results show that mouse Cx45 has a gene structure that differs from that of previously studied connexins and allows the production of heterogeneous Cx45 mRNAs with differing 5' UTRs. These differences might contribute to regulation of Cx45 protein levels by modulating mRNA stability or translational efficiency.  相似文献   

14.
The primary structure of human glutathione reductase gene (GSR) was determined by genomic cloning. The gene structure of human GSR spans 50 kb, consists of 13 exons, and was found to be highly similar to the mouse GSR gene. The coding sequence of human GSR resides on all 13 exons. An N-terminal arginine-rich mitochondrial leader sequence was present, with high homology to the murine leader sequence, between two in-frame start codons in the first exon. The 5' and 3' intron/exon splice junctions, with one exception, followed the general consensus sequences for intron spliced donor and acceptance sites.  相似文献   

15.
A complementary DNA clone for bovine osteonectin was used to isolate the osteonectin gene from two libraries of bovine genomic DNA fragments. Two overlapping clones were obtained whose relationship was determined by restriction mapping and sequence analysis. The two clones contain the entire osteonectin coding region spanning approximately 11 kilobases of genomic DNA. The coding region of the gene was determined, by electron microscopy and DNA sequencing, to reside in nine exons. In addition, there is at least one 5' exon interrupted by an intron in the 5'-nontranslated sequence of the gene. Excluding this 5' exon and the 3'-terminal exon, the exons are small and approximately uniform in size, averaging 130 +/- 17 base pairs. Three of the exons at the 5' end of the gene were sequenced and appear to encode discrete protein domains. For example, the putative exon 2 contains the coding region for the leader peptide of the molecule. The amino-terminal protein sequence was determined for osteonectin extracted from human, rabbit, and chicken bone and compared with those for bovine, mouse, and pig osteonectin. These data suggest that osteonectin is highly conserved between species, interspecies changes being seen primarily at the amino terminus of the protein and specifically in the region encoded by putative exon 3 in the bovine gene.  相似文献   

16.
17.
18.
We have isolated and determined the nucleotide sequence and genomic organization of the genes encoding Ly-3.1 and Ly-3.2. These genes span approximately 14 kb on chromosome 6 and consist of six exons and five introns. The exons correlate roughly with the putative functional domains, namely, a leader exon, a variable and joining region-like exon, a hinge region-like exon, a transmembrane exon, and two intracytoplasmic exons. There is no intervening sequence between V- and J-like gene segments, indicating that rearrangement is not necessary for the expression of the Ly-3 gene. In the 5'-flanking region there is no "TATA" box nor "CAAT" box; however, three "GC" boxes are located upstream of the ATG initiator codon. There are short stretches of sequence homologous to 5'-flanking sequences of the Ly-2 gene. In addition, the sequences CTCTGTGGCA at -748 exhibits homology to the enhancer core sequence of the human Ig H chain and TCR genes. Comparison of the nucleotide sequence corresponding to the extracellular portion between Ly-3.1 and Ly-3.2 revealed a single base difference which results in an amino acid substitution. Therefore it is likely that this amino acid difference is responsible for the previously defined Ly-3 allotypes.  相似文献   

19.
20.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号