首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice are highly resistant to infection byLegionella pneumophila compared with guinea pigs. In the present study injection of mice with moderate doses of cyclophosphamide before and at the time of challenge injection with viable legionellae made the animals much more susceptible to these organisms. The doses of cycloplosphamide used for the short time suppressed the mice in terms of their ability to form antibody and develop cellular immunity toLegionella antigens as measured by the splenic blastogenic assay. Vaccination of mice with a sublethal dose ofLegionella (106 organisms) or with 107 killed bacteria in complete Freund's adjuvant protected the cyclophosphamide-treated mice from infection with liveLegionella. It seems apparent that a vaccine prepared from live organisms or killed bacteria in adjuvant may be protective for immunosuppressed mice.  相似文献   

2.
Legionella pneumophila, the etiologic agent of respiratory pneumonia and systemic infections of man and some experimental animals, was studied in regard to the ability of these bacteria to induce blastogenic responses by spleen cells from normal vs sensitized mice. Antigens from this organism, including whole cell vaccine, an outer membrane extract, and a purified lipopolysaccharide-rich antigen, induced blastogenesis of normal spleen cells with peak responses on day +3 in vitro, similar to the blastogenic responses of spleen cells from the same animals exposed to the plant mitogens phytohemagglutinin and Concanavalin A, or the nonspecific bacterial antigenEscherichia lipopolysaccharides coli (LPS). Spleen cells from mice vaccinated with killedLegionella or infected with a sublethal dose of these bacteria 3–4 weeks or more previously evinced increased blastogenic responses to theLegionella antigens but not to the nonspecific mitogens or theE. coli LPS. The spleen cells from legionellae-sensitized mice evinced not only heightened blastogenic responses on day +3 of culture but also heightened responses during day +5 of culture. Spleen cells from sensitized mice showed less responses to the nonspecific plant mitogens orE. coli LPS on day +5 of culture. These results support the view that, after sensitization of mice with a bacterial antigen such asL. pneumophila, spleen cells respond in a specific heightened blastogenic manner toLegionella antigen, and this response has a higher magnitude and is more prolonged than the non-specific responses of cells from normal mice.  相似文献   

3.
Legionella pneumophila whole cells, including viable organisms or a killed vaccine, early after injection into mice suppressed the blastogenic responses of mouse spleen cells to both specific (i.e.,Legionella) and nonspecific (i.e., plant mitogen andEschericia coli lipopolysaccharide) stimulators. Mice given injections of sublethal numbers of viableLegionella or of a killed vaccine evidenced 3–4 weeks thereafter a marked increase in blastogenic sensitivity of their spleen cells to theLegionella antigen, either whole cells or soluble antigen, but no increase in responsiveness to nonspecific mitogens (i.e., concanavalin A, phytohemagglutinin, andE. coli lipopolysaccharide) was evident. In contrast, during the first week or so after injection of mice with either viable or killedLegionella, marked suppression of blastogenic responsiveness of spleen cells toLegionella antigens was evident. Concomitant suppression also occurred to concanavalin A and phytohemagglutinin, as well as toE. coli lipopolysaccharide. However, by the second week after injection of the animals with live or killedLegionella, such suppression disappeared. The importance of such early specific suppression of a cellular immune response early after exposure toLegionella antigen, in contrast with the early and sustained rise in specific antibody formation is being further investigated.  相似文献   

4.
Two strains of Legionella pneumophila of different virulence were examined for their influence on the metabolic oxidative activity of human polymorphonuclear leukocytes. The leukocytes exhibited decreased rates of oxygen consumption and diminished chemiluminescence activity following phagocytosis of a virulent strain of L. pneumophila serogroup 1. In contrast, phagocytosis of its multipassaged derivative rendered avirulent, was accompanied by increased rates of both oxygen consumption and chemiluminescence activity. Although no differences were observed in oxygen uptake induced by the virulent legionellae compared to leukocytes at rest, statistically significant differences were observed in the chemiluminescence responses. These observations were not unexpected, since the luminol-enhanced chemiluminescence assay, is more sensitive than the oxygen uptake assay. In spite of decreased metabolic activity of PMN in the presence of virulent legionellae, electron microscope studies showed higher numbers of intracellular L. pneumophila than the avirulent subtype. Thus, virulent and avirulent L. pneumophila can be differentiated on the basis of oxygen consumption and chemiluminescence assays.  相似文献   

5.
Three detection methods for Legionella species in water samples from cooling towers and a river were examined. Direct counting of bacteria stained with fluorescent antibody (FA) for L. pneumophila (serogroups 1 to 6) could detect the cell of 104 to 106 cell/100 ml in all 14 samples, while colony counting method detected 10 to 103 CFU/100 ml only in 8 samples from cooling towers. Polymerase chain reaction (PCR) assay with primers to amplify 16S ribosomal DNA sequence of most Legionella species (LEG primer) detected legionellae in 13 samples, while species-specific primers for L. pneumophila detected the DNAs from 3 samples. In laboratory examination, LEG primers could amplify DNAs of 29 species of genus Legionella with high sensitivity, even from 1 cell of L. pneumophila GIFU 9134. The PCR assay with LEG primers was specific and sensitive methods to be satisfied the survey of legionellae. Thus, PCR assay is a suitable method to detect and monitor Legionella species in an environment.  相似文献   

6.
Aims: To optimize ethidium monoazide (EMA) coupled with real‐time quantitative PCR (qPCR) and to evaluate its environmental applicability on quantifying viable legionellae in water and biofilm of cooling towers and hot water systems. Methods and Results: EMA (0·9–45·5 μg ml?1) and propidium monoazide (PMA, 0·9 and 2·3 μg ml?1) combined with qPCR (i.e. EMA‐qPCR and PMA‐qPCR, respectively) were applied to unheated and heated (70°C for 30 min) Legionella pneumophila to quantify viable cells, which was also simultaneously determined by BacLight Bacterial Viability kit with epifluorogenic microscopic enumeration (BacLight‐EM). The effects of nontarget microflora and sample matrix on the performance of EMA‐qPCR were also evaluated. In comparison with BacLight‐EM results, qPCR with EMA at 2·3 μg ml?1 was determined as the optimal EMA‐qPCR assay, which performed equally well as PMA‐qPCR for unheated Leg. pneumophila but better than PMA‐qPCR for heated Leg. pneumophila (P < 0·05). Moreover, qPCR with EMA at 2·3 μg ml?1 accurately quantified viable Leg. pneumophila, Legionella anisa and Legionella‐like amoebal pathogens 6 (LLAP 6) without interferences by heated legionellae, unheated nonlegionellae cells and cooling tower water matrix (P > 0·05). As for water and biofilm samples collected from cooling towers and hot water systems, the viable legionellae counts determined by EMA‐qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR. Conclusions: The qPCR with EMA at 2·3 μg ml?1 may accurately quantify viable legionellae (including fastidious LLAP 6) and Leg. pneumophila pretreated with superheating and is applicable for water and biofilm samples obtained from cooling towers and hot water systems. Significance and Impact of the Study: The EMA‐qPCR assay may be useful in environmental surveillance for viable legionellae and in evaluation of superheating efficacy against legionellae.  相似文献   

7.
In spite of the fact that various Legionella species are isolated from nonclinical water settings, there is no standard method to determine whether environmental legionellae may be infectious to humans. Here we provide a screening-level approach based on an in vivo murine (A/J mouse) model and three in vitro proliferation assays using Acanthamoeba polyphaga, and THP-1 human and J774 murine macrophage cell lines to identify potentially human-infectious legionellae. As an initial demonstration the infectivity potential of three clinical (Legionella pneumophila, L, longbeacheae, and L. micdadei) and three environmental (L. dumoffii, L. maceachernii, and L. sainthelensi) legionellae were evaluated. A/J mice were intranasally infected and by 6 h post infection (p.L), there were significant bacterial titers in the lungs. L. pneumophila, L. dumoffii, and L. micdadei densities were higher than L. longbeacheae, L. maceacherni, and L. sainthelensi at 24 h p.i. However, only L. pneumophila and L. micdadei persisted in the lungs after 48 h, indicating that the other isolates were rapidly cleared. Results from the in vitro assays showed that only L. pneumophila significantly multiplied within A. polyphaga, THP-1 and J774 cells after 72 h, but lysis of any of the in vitro hosts also flagged the strains for potential concern (e.g. L. dumoffii and L. micdadei). The results demonstrate the value of using multiple approaches to assess the potential level of pathogenicity of Legionella strains isolated from different environmental matrices.  相似文献   

8.
Legionella pneumophila, the agent of Legionnaires'' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130b) to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4×104 CFU per cm2 of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s) of a non-permissive species.  相似文献   

9.
Legionella pneumophila is an aquatic bacterium that is also the agent of Legionnaires’ disease pneumonia. Since L. pneumophila is transmitted directly from the environment to the lung, it is important to understand how legionellae survive at low temperatures. To identify genes that are needed for L. pneumophila growth at low temperature, we screened a population of mutagenized legionellae for strains that are specifically impaired for growth at 17°C. From the 7,400 mutants tested, 11 displayed defects ranging from ca. 10-fold to a complete inability to grow at the low temperature. PCR and sequence analysis were then utilized to identify the genes whose loss had compromised growth. The proteins thereby implicated in low-temperature growth included components of the type II secretion system (LspE, LspG, LspH), a lipid A biosynthetic enzyme (LpxP), a ribonuclease (RNAse R), an RNA helicase (CsdA/DeaD), TCA cycle enzymes (citrate synthase), enzymes linked to fatty acid (FadB) or amino acid (aspartate aminotransferase) catabolism, and two putative membrane proteins that were, based upon their sequences, unlike previously characterized proteins. Given the magnitude of their mutant’s defect, the aspartate aminotransferase, RNA helicase, and one of the putative membrane proteins were the factors most critical for L. pneumophila low-temperature growth. Thus, L. pneumophila not only employs some of the same processes and factors as other bacteria do in order to survive at low temperatures (e.g., LpxP, CsdA), but it also appears to possess novel modes of cold adaptation.  相似文献   

10.
Summary The antitumor effect of interleukin-2 (IL-2), alone and in combination with cyclophosphamide was assessed in mice with established sarcoma (MCA 105, H-2b), carcinoma (M109, H-2d) and T lymphoma (PIR-2, H-2b). Whereas administration of IL-2 alone (5×104–10×104 U, i.p. twice daily, for 4–8 consecutive days) prolonged the survival of mice with the solid neoplasms, it enhanced tumor growth and decreased survival of mice with the lymphoma. In the PIR-2 lymphoma, no IL-2 receptor (TAC) could be detected, nor could we demonstrate IL-2 tumor growth stimulation in vitro. A synergistic therapeutic effect was achieved in mice with the solid tumors, but not in mice with the lymphoma, only when IL-2 was given 1–4 days after cyclophosphamide (100–200 mg/kg). Conversely, administration of IL-2 1–4 days prior to cyclophosphamide resulted, in all three tumor systems, in enhanced tumor growth and in decreased survival as compared with mice receiving cyclophosphamide alone. Similarly, treatment with IL-2 both before and after cyclophosphamide was less efficacious than a single course of IL-2 given after-wards. It is concluded that for maximal therapeutic efficacy, IL-2 should be administered following chemotherapy, and that certain tumors may respond adversely to IL-2 treatment.  相似文献   

11.
Biofilms are a major source of human pathogenic Legionella pneumophila in aquatic systems. In this study, we investigated the capacity of L. pneumophila to colonize floating biofilms and the impact of Acanthamoeba castellanii on the replication of biofilm-associated Legionella. Biofilms were grown in Petri dishes and consisted of Aeromonas hydrophila, Escherichia coli, Flavobacterium breve, and Pseudomonas aeruginosa. Six hours following inoculation, Legionella were detected in floating biofilms in mean concentrations of 1.4 × 104 cells/cm2 (real-time polymerase chain reaction) and 8.3 × 102 CFU/cm2 (culture). Two-way analysis of variance tests and fluorescent in situ hybridization clearly proved that increased biofilm-associated L. pneumophila concentrations were the result of intracellular replication in A. castellanii. Forty-eight hours after the introduction of A. castellanii in the Petri dishes, 90 ± 0.8% of the amoebae (infection rate) were completely filled with highly metabolic active L. pneumophila (mean infection intensity).  相似文献   

12.
Cross-reacting antigens of three serogroups ofLegionella pneumophila differed serologically and immunologically from the serogroup-specific antigens. Intradermal injection of cross-reacting antigens into sensitized guinea pigs evoked skin hypersensitivity. Animals were sensitized either by injection of inactivatedL. pneumophila in adjuvant or by infection with live organisms. Skin reactions were measurable about 2–4 h after injection and continued to increase in intensity for the first 24 h, followed by a gradual decline over the next 48 h. Histological examination of skin reactions taken from test sites at 48 h revealed infiltration of mononuclear cells in and about the small subcutaneous blood vessels and throughout the dermis, compatible with a delayed-type reaction. The overall appearance and time course of the reaction resembled a combination of immediate and delayed types of hypersensitivity. Each cross-reacting antigen of the three serogroups evoked skin reactions in animals which had been sensitized to any of those serogroups, but was not reactive in nonsensitized animals. These observations indicate the possibility of detecting present or past infection ofL. pneumophila by skin tests.  相似文献   

13.
Intranasal infection of CBA/Ca mice with a sublethal dose of A/2 Japan influenza virus 305/57 decreased the blastogenic response to concanavalin A and phytohemagglutinin, and less to lipopolysaccharide andEscherichia coli bacteria. This depression of the blastogenic responses could be transferred from infected donor mice by intravenous injection of 4×107 spleen cells to otherwise untreated syngenic recipient mice. Similar infections with A/Victoria 3/75 and A/Texas 1/77 influenza virus strains caused less depressing effects. Less consistent results were seen with NMRI mice. No impairment of the antibody responses to unrelated protein antigen could be noted after such intranasal influenza infection. In contrast, the IgE antibody response was particularly increased after infection with Texas virus. Some deleterious effects of Victoria and Texas virus infections on the delayed hypersensitivity response to picryl chloride were seen in CBA mice but not in NMRI mice. This immune suppression by virus infection was not reflected by the defense against intraperitoneal infection withListeria monocytogenes andE. coli. In contrast, a small increase in resistance toListeria infection was recorded. The results of this study lend little support to the hypothesis that influenza infection impairs the immunological defense against a following bacterial infection, but may result in allergy.  相似文献   

14.
The ability ofLegionella pneumophila to induce secreted IL-1 (sIL-1) and membrane associated IL-1 (mIL-1) in murine peritoneal, splenic, and pulmonary macrophages was examined. Two preparations ofL. pneumophila were utilized, specifically, a formalin-killed, whole-cell preparation and viable bacteria. We demonstrated that both forms induce mIL-1 and sIL-1 in each of the macrophage populations tested; however, there were differences in the magnitude of responses with the different macrophage populations. In general, the viable bacteria induced greater IL-1 activity than did equivalent numbers of formalin-killed bacteria, with the exception of the highest concentrations tested (107 bacteria/ml). The results demonstrate thatL. pneumophila induces production of both sIL-1 and mIL-1 activities by murine macrophages from a variety of tissues.  相似文献   

15.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

16.
17.
A total of 25 gyrB gene sequences from 20 Legionella pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were obtained and analyzed, and a multiplex PCR for the simultaneous detection of Legionella bozemanae, Legionella longbeachae, Legionella micdadei and Legioenella pneumophila, and two single PCRs for the differentiation of L. pneumophila subsp. pneumophila and L. pneumophila subsp. fraseri were established. The multiplex PCR method was shown to be highly specific and reproducible when tested against 41 target strains and 17 strains of other bacteria species. The sensitivity of the multiplex PCR was also analyzed and was shown to detect levels as low as 1 ng of genomic DNA or 10 colony-forming units (CFUs) per milliliter in mock water samples. Sixty-three air conditioner condensed water samples from Shanghai City were examined, and the result was validated using 16S rRNA sequencing. The data reported here demonstrate that the multiplex PCR method described is efficient and convenient for the detection of Legionella species in water samples. Twenty L. pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were used for the validation of the two L. pneumophila subspecies-specific PCR methods, and the results indicated that the two PCR methods were both highly specific and convenient for the identification of L. pneumophila at the subspecies level.  相似文献   

18.
The intracellular pathogens Legionella micdadei and Legionella pneumophila are the two most common Legionella species that cause Legionnaires’ disease. Intracellular replication within pulmonary cells is the hallmark of Legionnaires’ disease. In the environment, legionellae are parasites of protozoans, and intracellular bacterial replication within protozoans plays a major role in the transmission of Legionnaires’ disease. In this study, we characterized the initial host signal transduction mechanisms involved during attachment to and invasion of the protozoan host Hartmannella vermiformis by L. micdadei. Bacterial attachment prior to invasion of H. vermiformis by L. micdadei is associated with tyrosine dephosphorylation of multiple host cell proteins, including a 170-kDa protein. We have previously shown that this 170-kDa protein is the galactose N-acetylgalactosamine (Gal/GalNAc)-inhibitable lectin receptor that mediates attachment to and invasion of H. vermiformis by L. pneumophila. Subsequent bacterial entry targets L. micdadei into a phagosome that is not surrounded by the rough endoplasmic reticulum (RER). In contrast, uptake of L. pneumophila mediated by attachment to the Gal/GalNAc lectin is followed by targeting of the bacterium into an RER-surrounded phagosome. These results indicate that despite similarities in the L. micdadei and L. pneumophila attachment-mediated signal transduction mechanisms in H. vermiformis, the two bacterial species are targeted into morphologically distinct phagosomes in their natural protozoan host.  相似文献   

19.
Spleen cells from mice bearing late-stage methylcholanthrene-induced tumor did not show any tumor activity when mixed with tumor cells in Winn's assay. Treatment of these mice with cyclophosphamide (CY) induced a tumor-inhibitory activity in spleen, occurring on day 7 after treatment, reaching its maximum on day 11 and disappearing by day 21. This antitumor activity could not be induced in control, tumor-free or T-deficient tumor-bearing mice. CY-induced tumor-inhibitory activity was immunologically specific, and mediated by Thy-1+, L3T4, Ly-2+ cells. Contrary to spleen cells from untreated tumor-bearing mice, spleen cells from CY-treated tumor-bearing mice did not suppress the antitumor activity of immune spleen cells in Winn's assay. However, in contrast to immune spleen cells, CY-induced tumor-inhibitory cells did not manifest antitumor activity when transferred systemically (i. v.) into T-cell-deficient tumor-bearing mice. Even more, spleen cells from CY-pretreated mice, harvested 7–15 days after the drug administration, partially suppressed the antitumor activity of concomitantly transferred spleen cells from specifically immune mice. Nevertheless, CY-pretreated mice manifested concomitant immunity, i.e. these mice exhibited higher resistance to a second inoculum of the same tumor than did nontreated mice or even mice with excised primary tumor.  相似文献   

20.
Legionella pneumophila can invade and grow within explanted alveolar epithelial cells. Given its potential clinical significance, an examination of the molecular basis of epithelial cell infection was initiated. The mip gene encodes a 24-kilodalton surface protein that promotes macrophage infection and virulence. To determine whether this gene is required for pneumocyte infection, we tested a strain bearing a mip null mutation for its ability to infect both explanted type II cells and type I-like cell lines. For infection of type II cells, the infective dose 50% for the Mip- strain was 25-fold higher than an isogenic Mip+ strain. Type I cell monolayers infected with the mutant for 3 days yielded 50-fold fewer bacteria than did monolayers infected with the parental strain. These data indicate that Mip enhances infection of pneumocytes and that L. pneumophila employs some of the same genes (mechanisms) to infect epithelial cells and marcophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号