首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sj?gren's syndrome, are discussed.  相似文献   

2.
3.
Summary Because the secretion of endolymph has been localized in the ampullar part of the frog semicircular canal, we attempted to determine by cytochemical methods the ultrastructural localization of two enzymes that are assumed to play a role in endolymph secretion: carbonic anhydrase and adenylate cyclase. Functionally, the epithelium of the frog semicircular canal can be schematically divided into three areas: sensory (crista ampullaris), secretory (dark cells), and non-sensory and nonsecretory (transitional and undifferentiated cells) areas. Carbonic anhydrase activity was widely distributed in dark cells. Dark cell labeling disappeared in the presence of acetazolamide. The other cells of the canal did not show any carbonic anhydrase labeling except for the supporting cells of the sensory cells. Adenylate cyclase activity was found on the basolateral and apical membranes of dark cells, and on the apical membrane of sensory cells; weak labeling was also observed in the other epithelial cells. In the apical membrane of the dark cells, adenylate cyclase labeling was dependent on the presence of vasotocin, the frog antidiuretic hormone. The dark cells of the frog semicircular canal thus possess the enzyme equipment needed for the secretion of endolymph and its possible hormonal regulation.  相似文献   

4.
Ion transport cells in gerbil inner ear were differentiated histochemically by staining glycoconjugates (GCs) with a battery of horseradish peroxidase-conjugated lectins. Strong staining with PSA and LCA showed a high content of N-linked oligosaccharides in transport cell GCs. Reactivity with PHA-L and PHA-E identified GC with triantennary and with bisected biantennary N-linked oligosaccharides, respectively, in these cells. High affinity for DSA and PWM demonstrated abundant N-acetyl lactosamine in N-linked side chains. Ion transporting epithelial cells reacting with lectins specific for N-linked oligosaccharides included strial marginal cells and outer sulcus cells of the cochlea and dark cells, transitional cells, and planum semilunatum cells of the vestibular system. In general, all of the inner ear transport epithelial cells revealed a similar lectin binding profile, with the one exception that SBA reacted strongly with ion transporting cells in the vestibular system but only weakly with those in the cochlea. Fibrocytes specialized for ion transport located in distinct areas in the suprastrial and inferior regions of the spiral ligament also stained with lectins that demonstrate N-glycosylation. However, transport fibrocytes differed from transport epithelial cells in two ways. First, they reacted e with HPA, DBA, VVA, and SJA specific for O-linkages and second, they failed to react with UEA I. The staining pattern for N-glycosylated GC resembled that for Na+, K(+)-ATPase in inner ear, suggesting a relationship between these constituents.  相似文献   

5.
The cochlear stria vascularis produces the positive endocochlear potential (EP) and the endolymph. Both the EP and the endolymph are essential for the physiological function of hair cells. The intermediate cell is one of several cell types constituting the stria vascularis. It is known that inward rectifier K+ channels can play a constitutive role in the determination of the resting membrane potential. Localization of a member of the inward rectifier K+ channel family, Kir4.1, in the stria vascularis of gerbils and rats was investigated by immunological methods. A polyclonal antibody specific to the C-terminus of the rat Kir4.1 channel was raised in rabbits. Immunostaining of dissociated cells revealed that the Kir4.1 channel was localized to the intermediate cell, but not to the epithelial marginal cell. Subcellular localization of the Kir4.1 channel to the plasma membrane of the intermediate cell was confirmed by immunoelectron microscopy. Immunostaining of whole-tissue preparations revealed a network-like structure composed of intermediate cells. It seems likely that the Kir4.1 channel mediates the inwardly rectifying K+ current in the intermediate cell as shown previously by electrophysiological methods, and that this channel plays key roles in the production of the EP and K+ transport in the stria vascularis.  相似文献   

6.
In the cochlea, sensory transduction depends on the endocochlear potential (EP) and the unique composition of the endolymph, both of which are maintained by a highly specialized epithelium at the cochlear lateral wall, the stria vascularis. The generation of the EP by the stria vascularis, in turn, relies on the insulation of an intrastrial extracellular compartment by epithelial basal cells. Despite the physiological importance of basal cells, their cellular origin and the molecular pathways that lead to their differentiation are unclear. Here, we show by genetic lineage tracing in the mouse that basal cells exclusively derive from the otic mesenchyme. Conditional deletion of E-cadherin in the otic mesenchyme and its descendants does not abrogate the transition from mesenchymal precursors to epithelial basal cells. Rather, dedifferentiation of intermediate cells, altered morphology of basal and marginal cells and hearing impairment due to decreased EP in E-cadherin mutant mice demonstrate an essential role of E-cadherin in terminal basal cell differentiation and their interaction with other strial cell types to establish and maintain the functional architecture of the stria vascularis.  相似文献   

7.
The endolymph in the endolymphatic sac (ES) is acidic (pH 6.6-7). Maintaining this acidic lumen is believed to be important for the normal function of the ES. The acid-base regulation mechanisms of the ES are unknown. Here we investigated the expression patterns of acid-base regulators, including vacuolar (v)H+-ATPase (proton pump), carbonic anhydrase (CA) II, and pendrin in the murine ES epithelium by immunohistochemistry (IHC) and compared their expression patterns by double immunostaining. We found that pendrin and vH+-ATPase were co-localized in the apical membrane of a specific type of ES epithelial cell. Pendrin- and vH+-ATPase-positive cells also expressed cytoplasmic CA II. Co-expression of pendrin, vH+-ATPase, and CA II in the same subgroup of ES cells suggests that this specific type of ES cell is responsible for the acid-base balance processes in the ES and pendrin, vH+-ATPase, and CA II are involved in these processes.  相似文献   

8.
Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.  相似文献   

9.
Histamine is suggested to play a role in mammary gland growth regulation, differentiation and functioning during pregnancy and lactation. Two pools of histamine are thought to be involved in these processes: mastocyte- and epithelial cell related histamine. In the present study we focused on epithelial cells. Immunohistochemistry has shown that the epithelial cells positive for histamine and L-histidine decarboxylase (HDC), the primary enzyme regulating histamine biosynthesis, were mainly found in cells forming alveolar structures in the mammary gland. Cultured primary mouse mammary epithelial cells (MMEC) expressed strong HDC immunoreactivity, especially dividing cells and non-differentiated ones. Histidine decarboxylase activity undergoes significant changes during pregnancy and lactation. Pregnancy associated intensive growth of the mammary gland coincided with an increase and the first days of lactation with a decrease of HDC protein expression. Binding studies with mammary tissue membranes and epithelial cell membranes revealed the presence of H1 and H3 but not H2 receptors. Summarizing, our data have shown that mammary epithelial cells are capable of synthesizing and excreting histamine and they bear histamine receptors. These findings further substantiate the role of histamine in mammary gland physiology.  相似文献   

10.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

11.
12.
The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endolymph ionic composition and the endocochlear potential. A key protein in the maintenance of the electrochemical composition of the endolymph is the Na,K-ATPase. In this study, we have looked for the presence in the rat inner ear of members of the FXYD protein family, recently identified as tissue-specific modulators of Na,K-ATPase. Only FXYD6 is detected at the protein level. FXYD6 is expressed in various epithelial cells bordering the endolymph space and in the auditory neurons. FXYD6 co-localizes with Na,K-ATPase in the stria vascularis and can be co-immunoprecipitated with Na,K-ATPase. After expression in Xenopus oocytes, FXYD6 associates with Na,K-ATPase alpha1-beta1 and alpha1-beta2 isozymes, which are preferentially expressed in different regions of the inner ear and also with gastric and non-gastric H,K-ATPases. The apparent K(+) and Na(+) affinities of alpha1-beta1 and alpha1-beta2 isozymes are different. Association of FXYD6 with Na,K-ATPase alpha1-beta1 isozymes slightly decreases their apparent K(+) affinity and significantly decreases their apparent Na(+) affinity. On the other hand, association with alpha1-beta2 isozymes increases their apparent K(+) and Na(+) affinity. The effects of FXYD6 on the apparent Na(+) affinity of Na,K-ATPase and the voltage dependence of its K(+) effect are distinct from other FXYD proteins. In conclusion, this study defines the last FXYD protein of unknown function as a modulator of Na,K-ATPase. Among FXYD protein, FXYD6 is unique in its expression in the inner ear, suggesting a role in endolymph composition.  相似文献   

13.
Many cell types in the airway express the adhesive glycoprotein for leukocytes intercellular adhesion molecule-1 (ICAM-1) constitutively and/or in response to inflammatory stimuli. In this study, we identified functions of ICAM-1 on airway epithelial cells in defense against infection with Haemophilus influenzae. Initial experiments using a mouse model of airway infection in which the bacterial inoculum was mixed with agar beads that localize inflammation in airways demonstrated that ICAM-1 expression was required for efficient clearance of H. influenzae. Airway epithelial cell ICAM-1 expression required few or no leukocytes, suggesting that epithelial cells could be activated directly by interaction with bacteria. Specific inhibition of ICAM-1 function on epithelial cells by orotracheal injection of blocking antibodies resulted in decreased leukocyte recruitment and H. influenzae clearance in the airway. Inhibition of endothelial cell ICAM-1 resulted in a similar decrease in leukocyte recruitment but did not affect bacterial clearance, indicating that epithelial cell ICAM-1 had an additional contribution to airway defense independent of effects on leukocyte migration. To assess this possibility, we used an in vitro model of neutrophil phagocytosis of bacteria and observed significantly greater engulfment of bacteria by neutrophils adherent to epithelial cells expressing ICAM-1 compared with nonadherent neutrophils. Furthermore, bacterial phagocytosis and killing by neutrophils after interaction with epithelial cells were decreased when a blocking antibody inhibited ICAM-1 function. The results indicate that epithelial cell ICAM-1 participates in neutrophil recruitment into the airway, but its most important role in clearance of H. influenzae may be assistance with neutrophil-dependent bacterial killing.  相似文献   

14.
Considerable evidence supports novel functions for lysyl oxidase (LOX) beyond its traditional role in initiating cross-linkages in collagen and elastin within the extracellular matrix. These novel roles are particularly relevant during the transition of malignant epithelial cells towards a migratory and invasive phenotype. However, knowledge on cellular and matrix functions of LOX has been generated almost exclusively in mesenchymal cell types. But it is becoming increasingly evident that these cell types are not adequate to address these novel and highly significant roles for LOX in epithelial tissues. In this initial report, we demonstrate that active LOX is expressed by polarized MDCK II kidney and MCF-10A breast epithelial cells. Furthermore, we show evidence for the presence of mature LOX in the cytoplasm and establish these cell lines as models for epithelial LOX studies.  相似文献   

15.
The endolymphatic sac is a non-sensory organ of the inner ear. It is connected to the endolymphatic compartment that is filled with endolymph, a potassium-rich fluid that bathes the apical side of inner ear sensory cells. The main functions ascribed to the endolymphatic sac are the regulation of the volume and pressure of endolymph, the immune response of the inner ear, and the elimination of endolymphatic waste products by phagocytosis. Functional alteration of these functions, leading to deficient endolymph homeostasis and/or altered inner ear immune response, may participate to the pathophysiology of Ménière's disease, an inner ear pathology that causes episodes of vertigo, sensorineural hearing loss and tinnitus, and is characterized by an increase in volume of the cochleo-vestibular endolymph (endolymphatic hydrops).  相似文献   

16.
Modulation of epithelial function by oxidants such as hydrogen peroxide may contribute to a variety of disease processes. The effects of hydrogen peroxide (H2O2) on epithelial barrier function and tight junction protein distribution were compared in three distinct types of polarised epithelial cell, each of which was found to respond differently to H2O2. Of the cell-lines examined, Madin-Darby canine kidney (MDCK) stain II was the most susceptible to H2O2 and Caco-2 the least H2O2 induced a decrease in transepithelial electrical resistance in all three epithelial cell-lines which was accompanied by redistribution of the tight junction protein occludin in Caco-2 and MDCK II but not MDCK I, cell layers. The effects of H2O2 on epithelia displayed marked asymmetry, each cell-line being affected more by basal than apical application of H2O2. Genistein partially prevented the effects of H2O2 on Caco-2 cells suggesting a role for protein tyrosine phosphorylation in H2O2-induced epithelial barrier dysfunction. However, genistein was without effect on the responses of MDCK cells to H2O2.Taken together these data indicate that H2O2 has distinct effects onthe tight junctions of epithelial cells from different origins and suggest that enhanced tyrosine phosphorylation is a contributory factor inthe enhanced permeability of some, but possibly not all, epithelial cell-lines.  相似文献   

17.
To study the regulation of the endothelial barrier, we examined the relationship between the paracellular barrier function and the expression of 7H6 antigen localized at tight junctions of endothelial cells by using transendothelial electrical resistance (TER), fluxes of albumin and dextran, transmigration of rat mammary cancer (SST-2) cells across rat lung endothelial (RLE) cells, and immunocytochemical expression of 7H6 antigen as parameters. RLE cells cultured at a confluent cell density did not express immunohistochemically demonstrable 7H6 antigen and had low paracellular barrier functions. However, treatment of the endothelial cells with 0.5 mMdibutyryl–cAMP or 10−6Mall-trans-retinoic acid for 4 days induced 7H6 antigen preferentially at the cell border and simultaneously enhanced the barrier function twofold, in terms of TER and fluxes of albumin and dextran. Furthermore, RA-treated RLE cell monolayers with the enhanced barrier function significantly inhibited the transmigration of SST-2 cells. These results together with those of our previous study indicate that 7H6 antigen has a crucial role in the regulation of paracellular barrier function not only in epithelial cells but also in vascular endothelial cells. The present study also suggests that tight junctions of vascular endotheliumin vivofunction as a barrier between blood and tissues against metastatic cancer cells.  相似文献   

18.
The ultrastructure of the endolymphatic sac (ES) of the late stage larva of the Japanese red-bellied newt, Cynops pyrrhogaster (stage 57), was examined by light and transmission electron microscopy. The two endolymphatic sacs are located at the dorsal-medial side of the otic vesicle on the dorsal-lateral side of the midbrain in the cranial cavity. The wall of the sac is composed of a layer of cubical epithelial cells with loose, interposed intercellular spaces. The sac contains a large luminal cavity, in which endolymph and numerous otoconia are present. The epithelial cells of different portions of the sac have a similar structure. These cells contain an abundance of cytoplasmic organelles, including ribosomes, Golgi complexes, and numerous vesicles. Two types of vesicles are found in the epithelial cells: the “floccular” vesicle and the “granular” vesicle. The floccular vesicles are located in the supra- and lateral-nuclear cytoplasm and contain flocccular material. The granular vesicles have a fine granular substance and are usually situated apposed to the apical cell membrane. The granular vesicles are suggested to be secreted into the lumen, while the floccular vesicles are thought to be absorbed from the lumen and conveyed to the intercellular spaces by the epithelial cells. The apical surfaces of the epithelial cells bear numerous microvilli. Apparently floating cells, which bear long microvilli on the free surfaces, are observed in the lumen of the ES. Based on the fine structure, the function of the endolymphatic sac of the newt Cynops pyrrhogaster is discussed.  相似文献   

19.
Carbonic anhydrase (CA) in the inner ear sacculus was examined by activity assay, Western blotting and immunohistochemistry to determine its role in otolith calcification. An immunoreactive protein with a molecular mass of approximately 28 kDa was detected by Western blotting. The CO2 hydration activity in the cytosol fraction of the sacculus was 5.4 units/mg protein, while little or no activity was detected in the nuclear and mitochondrial fractions. The enzyme activity was highly inhibited by acetazolamide. The concentration of 50% inhibition was 8.16 nM and the inhibition constant of the activity was 8.25 nM. Transitional and squamous epithelial cells of the sacculus were immunopositive with an anti-CA II antibody, but sensory epithelial cells and mitochondria-rich cells in the transitional epithelium were not. These results suggest that transitional epithelial cells other than mitochondria-rich cells and squamous epithelial cells play an important role in otolith calcification by supplying bicarbonate to otoliths and/or by eliminating protons from endolymph.  相似文献   

20.
B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号