首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In murine C1300 neuroblastoma cells, clone Neuro 2A, the major fraction of the necessary increase in cell surface area during the cell cycle occurs within a short period around mitosis. During this period cell cycle-related modulations in a number of structural, dynamic and transport properties are most prominent. In this study we have examined the mechanism of rapid plasma membrane growth during mitosis, and the resulting changes in the ultrastructural features of the plasma membrane, by scanning and freeze-fracture electron microscopy as well as by electron microscopy of ultrathin sections. Our observations show that plasma membrane growth occurs by the fusion with and the incorporation into the plasma membrane of cytoplasmic multilamellar, lipidic membrane vesicles. Such vesicles are not observed at other times in the cell cycle. As a consequence, IMP-free domains appear transiently in the mitotic and early post-mitotic plasma membrane. Comparison of replicas prepared from glutaraldehyde-fixed cells and unfixed, ultrarapidly frozen cells showed that aldehyde fixation artefactually induces a bleb-like appearance of these domains. The IMP-free domains disappear in the G1-phase as a result of the mobilization and lateral redistribution of membrane components. It is argued that mitotic membrane growth by preferential incorporation of membrane lipids not only serves to accomodate for the necessary increase in cell surface area, but also provides a mechanism for plasma membrane-mediated regulation of the cell cycle.  相似文献   

2.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

3.
To study precursor-product relationships between cytoplasmic membranes of the inner segment of photoreceptors and the continually renewed outer disc membrane, we have compared the density and size distribution of intramembrane particles (IMP) in various membrane compartments of freeze-fractured photoreceptor inner and outer segments. Both rod and cone outer segments of Xenopus laevis are characterized by a relatively uniform distribution of approximately 4,400-4,700 IMP/micron2 in P-face (PF) leaflets of disc membranes. A similar distribution of IMP is found in the outer segment plasma membrane, the ciliary plasma membrane, and in the plasma membrane of the inner segment in the immediate periciliary region. In each case the size distribution of IMP can be characterized as unimodal with a mean diameter of approximately 10 nm. PF leaflets of endoplasmic reticulum, Golgi complex, and vesicles near the cilium have IMP with a size distribution like that in the cilium and outer segment, but with an average density of approximately 2,000/micron2. In contrast, IMP are smaller in average size (approximately 7.5 nm) in PF leaflets of inner segment plasma membrane, exclusive of the periciliary rgion. The similarity of size distribution of IMP in inner segment cytoplasmic membranes and those within the plasmalemma of the cilium and outer segment suggest a precursor-product relationship between the two systems. The structure of the vesicle-rich periciliary region and the segregation of IMP with different size distributions in this region suggest that components destined for incorporation into the outer segment exist as preformed membrane packages (vesicles) which fuse with the inner segment plasma membrane in the periciliary region. Subsequently, membrane components may be transferred to forming discs of the outer segment via the ciliary plasma membrane.  相似文献   

4.
The distribution and density of intramembranous particles (IMP) in the plasma membrane of the acellular slime mold Physarum polycephalum during sclerotization, sporulation and germination was investigated by means of freeze-etching. The total number of IMP on both the PF and EF of young as well as dry spores (2,100–2,200 IMP/μm2), wetted spores (1,550 IMP/μm2) and sclerotia (2,300 IMP/μm2) is remarkably reduced in comparison to the IMP-density in the plasma membrane of migrating plasmodia (3,680 IMP/μm2). The most obvious decrease in IMP-density can be observed in EF, i. e., the asymmetry of the cell membrane as expressed by the PF: EF ratio shifts from about 2.5 : 1 to 10 : 1. The cell surface of spores and sclerotia shows a regular pattern of elevations on the PF and corresponding indentations on the EF. On the PF the elevations display a distinct accumulation of IMP. The significance of the fine structural changes of the cell membrane during sclerotization, sporulation and the early stage of spore germination is discussed with regard to altered physiological conditions.  相似文献   

5.
During the maturation of two strains of herpes simplex virus type 1 (VR3 and Patton), intramembrane changes were detected with the freeze-fracture technique in the viral envelope and the infected cell plasma membrane, and these changes were compared with data obtained from thin sections. Regardless of the strain, the inner leaflet of the viral envelope of extracellular virions was characterized by a density of intramembrane particles (IMP) three times larger than the host nuclear and plasma membrane. Addition of IMP, which probably represent virus-coded proteins, was detected in the viral envelope only after budding from the nuclear membrane, whereas it occurred during envelopment of capsids at cytoplasmic vacuoles. Fused membranes also showed one of their fracture faces covered with a high density of IMP similar to that of the mature virion envelope. The internal side of the membrane leaflet bearing these numerous particles was always characterized by the presence of an electron-dense material in thin sections. In addition, the plasma membrane of fibroblasts and Vero cells showed strain-specific changes: patches of closely packed IMP were observed with the VR3 strain, whereas ridges almost devoid of IMP characterized the plasmalemma of cells infected with the Patton strain. These intramembrane changes, however, were not observed as early as herpes membrane antigens. Thus, application of the freeze-fracture technique to herpes simplex virus type 1-infected cells revealed striking structural differences between viral and uninfected cell membranes. These differences are probably related to insertion and clustering of virus-coded proteins in the hydrophobic part of the membrane bilayer.  相似文献   

6.
The ultrastructural peculiarities of mitochondria-rich cells of the frog urinary bladder are analysed using three electron microscopic methods: ultrathin sections, scanning electron microscopy, freeze fracture. The mitochondria and tubular and vesicular structures are most abundant in the apical region of cytoplasm. The P-face (PF) of the apical plasma membrane is characterized by the presence of rod-shaped intramembrane particles (IMP), whereas the E-face (EF) possesses complementary pits. Depending on the distribution density of the rod-shaped IMP, three types of cells are described. The apical plasma membrane has an invert distribution of the globular IMP: a great quantity of IMP on the EF and a few particles on the PF. This structure of the apical plasma membrane is supposed to correlate with its very low water permeability. Using filipin as a marker of cholesterol localization, it has been shown that the mitochondria-rich cell apical membrane contains more cholesterol than that of the granular cells. The nature of the rod-shaped IMP and their role in the transmembrane ion transport have been discussed.  相似文献   

7.
The anterior sternal epithelium of terrestrial isopods transports cuticular Ca(2+) to and from large sternal CaCO(3) deposits. We analyzed the anterior and posterior sternal epithelium by the means of the freeze-etch technique and measured the size distribution and density of intramembrane particles (IMPs) during three different molting stages. At least three IMP size classes around 4.5, 7.7, and 9.4 nm can be distinguished on the P-face of the apical and basolateral plasma membrane. An additional size class of around 12.8 nm is restricted to the apical compartment. In the anterior sternal epithelium, the density of these large particles changes by a factor of 1.9 during the molt cycle, suggesting a role in CaCO(3) formation and/or resorption. The density of the smaller IMPs rises transiently by a factor of 1.3 in the posterior sternal epithelium only. The IMP density of the basolateral plasma membrane increases significantly by a factor of 1.4 and 1.3 in the anterior and posterior sternal epithelia, respectively. The results indicate that increases in the IMP density contribute to the differentiation to an increased transport activity during the cyclic enlargements of the plasma membrane surface area in the anterior sternal epithelium.  相似文献   

8.
Human peripheral blood T-lymphocytes, normally resting at the G0 phase, were stimulated with phytohemagglutinin (PHA) and interleukin-2 (IL-2) to induce the cell division cycle. The cells were examined at 24-h intervals for up to 96 h by flow cytometry to determine cell cycle distributions and by electrorotation to determine dielectric properties. The average membrane specific capacitance was found to vary from 12 (+/-1.5) mF/m2 prior to stimulation to 10 (+/-1.5) and 16 (+/-3.5) mF/m2 at 24 and 48 h after stimulation, respectively, and to remain unchanged up to 96 h after stimulation. Scanning electron microscopy studies of the cells revealed an increased complexity in cell membrane morphology following stimulation, suggesting that the observed change in the membrane capacitance was dominated by the alteration of cell surface structures. The average electrical conductivity of the cell interior decreased from approximately 1.1 S/m prior to stimulation to approximately 0.8 S/m at 24 h after stimulation and showed little change thereafter. The average dielectric permittivity of the cell interior remained almost unchanged throughout the course of the cell stimulation. The percentage of T-lymphocytes in the S and G2/M phases increased from approximately 4% prior to stimulation to approximately 11 and approximately 34% at 24 and 48 h after stimulation, respectively. The large change in membrane specific capacitance between the 24 and 48 h time period coincided with the large alteration in the cell cycle distribution where the S and G2/M populations increased by approximately 23%. These data, together with an analysis of the variation of the membrane capacitance during the cell cycle based on the cell cycle-dependent membrane lipid accumulation, show that there is a correlation between membrane capacitance and cell cycle phases that reflects alterations in the cell plasma membrane.  相似文献   

9.
C A Forsman 《Histochemistry》1985,82(3):209-218
Application of filipin to sympathetic ganglia results in membrane deformations in both the neurons and the satellite cells. The plasma membranes of the principal ganglion cells show a non-homogeneous distribution of filipin induced deformations with fewer deformations in the perikaryal plasma membrane than in the nerve fiber membrane. The filipin induced membrane lesions are correlated to the number of IMPs of the neuronal membrane i.e. a high density of intramembrane particles (IMP) gives fewer deformations and vice versa. The membrane of the satellite cells contain a higher density of probe induced lesions than the neuronal membrane. The filipin induced deformations in the satellite cells are not correlated to the number of IMPs or to the number of orthogonal arrays of small particles (OAP). Specialized membrane areas such as the gap junction is always devoided of filipin induced lesions. A similar distribution of membrane lesions was found when tomatin was used instead of filipin. These results indicate a possible difference in lipid content between various parts of the neurons and between the neuronal and satellite cell plasma membrane in guinea pig sympathetic ganglia.  相似文献   

10.
The plasmalemma of mature and growing olfactory axons of the bullfrog has been studied by freeze-fracture. Intramembrane particles (IMPs) of mature olfactory axons are found to be uniformly distributed along the shaft. However, during growth, a decreasing gradient of IMP density is evident along the somatofugal axis. The size histograms of axolemmal IMPs from different segments of growing nerve reveal regional differences in the particle composition. The distribution of each individual size class of particles along the growing nerve forms a decreasing gradient in the somatofugal direction; the slope of these gradients varies directly with particle diameter. These size-dependent density gradients are consistent with a process of lateral diffusion of membrane components that are inserted proximally into the plasma membrane. The membrane composition of the growth cone, however, appears to be independent of these diffusion gradients; it displays a mosaic pattern of discrete domains of high and low particle densities. The relative IMP profiles of these growth cone regions are similar to one another but contain higher densities of large IMPs than the neighboring axonal shaft. The shifting distributions of intramembrane particles that characterize the sprouting neuron give new insights into cellular processes that may underlie the establishment of the functional polarity of the neuron and into the dynamics of axolemmal maturation.  相似文献   

11.
Toxic effects of both main colicin types, i.e. of porin and nuclease types, involve the direct contact of their molecules with the plasma membrane of sensitive cells. In the present study, it was tested whether this contact provokes a lateral or vertical movement of intramembrane protein particles (IMP) or a direct cleavage of the proteins. IMP were visualized by freeze-fracturing and electron microscopy on the protoplasmic fracture face (PF) of colicin-treated cells of Escherichia coli. Possible changes in distribution and in density of IMP due to treatment with colicins E1-E7 and K were followed. As a control, the bacteria were equilibrated at 0 degrees C before quenching, which caused a reversible formation of smooth areas and a decrease in the mean density of IMP on the PF. Colicins E1-E7 had no clear-cut effect on the disposition of IMP. Only colicin K decreased the IMP density, by 10% in E. coli strain 58-161 and by 17% in strain C6; the distribution of IMP remained homogeneous. Trypsin reactivation of colicin-K-inactivated bacteria was not reflected by restoration of the original density of IMP; on the contrary, it led to a further decrease, of 1-13%, in IMP density, presumably by proteolytic cleavage. Varying densities of IMP in different strains of the same bacterial species (under standard conditions) were confirmed.  相似文献   

12.
The anterior sternal epithelium of terrestrial isopods transports cuticular Ca2+ to and from large sternal CaCO3 deposits. We analyzed the anterior and posterior sternal epithelium by the means of the freeze-etch technique and measured the size distribution and density of intramembrane particles (IMPs) during three different molting stages. At least three IMP size classes around 4.5, 7.7, and 9.4 nm can be distinguished on the P-face of the apical and basolateral plasma membrane. An additional size class of around 12.8 nm is restricted to the apical compartment. In the anterior sternal epithelium, the density of these large particles changes by a factor of 1.9 during the molt cycle, suggesting a role in CaCO3 formation and/or resorption. The density of the smaller IMPs rises transiently by a factor of 1.3 in the posterior sternal epithelium only. The IMP density of the basolateral plasma membrane increases significantly by a factor of 1.4 and 1.3 in the anterior and posterior sternal epithelia, respectively. The results indicate that increases in the IMP density contribute to the differentiation to an increased transport activity during the cyclic enlargements of the plasma membrane surface area in the anterior sternal epithelium.  相似文献   

13.
Freeze fracture ultrastructure studies have shown that contact inhibited 3T3 cells contain aggregated intramembranous particles (IMP) while transformed 3T3 cells have randomly distributed IMP. The results of this study show that the aggregation of IMP in 3T3 cells is primarily related to the degree of cell contact and not significantly affected by inhibition of cell movement. Cell cycle studies do, however, show a transient disaggregation of IMP during the mitotic phase of the cell cycle. These observations are interpreted to suggest that changes in membrane structure which occur during mitosis or following cell-to-cell contact may be associated with changes in membrane fluidity and the activity of membrane enzymes that appear to be critical for control of cell growth and cell division.  相似文献   

14.
Separated T and B lymphocytes from human peripheral blood were studied using the freeze-fracture technique. Quantitative analysis performed on density and size of intramembranous particles (IMPs) present on both fracture faces of the plasma membrane has revealed remarkable differences between cells belonging to the two main lymphocyte populations. In particular: (a) both fracture faces of the cytoplasmic membrane of B lymphocytes exhibit larger particles than T lymphocytes; (b) the mean densities, on both protoplasmic (PF) and external (EF) fracture faces, in B lymphocytes are lower than in T lymphocytes; (c) in B cells the partition ratio of particles between PF and EF is reversed with respect to T cells; (d) on both fracture faces of B lymphocytes, the IMP densities present a normal distribution while on T cells, density values show bimodal distributions indicating the existence of two cell subsets differing in particle density.  相似文献   

15.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

16.
The mobility characteristics of plasma membrane constituents were studied in dissociated cells from embryos of Xenopus laevis at various stages of development from early blastula until neurulation. An increased rate of fluorescein isothiocyanate-concanavalin A induced patching and capping of Con A-binding proteins during this period of development was correlated with a threefold increase in the lateral mobility of the receptor molecules, as determined by the fluorescent photobleaching recovery (FPR) method, the major change occurring at the onset of gastrulation. Using the same method, it was demonstrated that the lateral mobility of plasma membrane lipids increases twofold during this period of development. The major change being detectable, however, at the late blastula stage. This is in coincidence with the initiation of cell motility in dissociated Xenopus embryo cells. It is concluded that the lateral mobility of membrane proteins and lipids increases significantly during early Xenopus development, but are at least in part subject to different control mechanisms. The results suggest that the initiation of morphogenetic movements is related to changes in the dynamic properties of plasma membrane constituents.  相似文献   

17.
Alkaline phosphatase (AP), 5'-nucleotidase (5'N), Mg2+-activated ATPase (Mg-ATPase) and Ca2+-activated ATPase (Ca-ATPase) were studied in sychronized HeLa S3 cells with cytochemical methods and electron microscopy. It was found that AP activity, as determined by the deposition of lead phosphate reaction product (r.p.) was most active in mitotic (M), early and middle G1 cells, less active in late G1 and almost undetectable in S phase cells. Most AP enzyme activity was found to be associated with undulations (mainly microvilli) of the plasma membrane. Fluctuations and the redistribution of 5'N were also observed; the reaction for 5'N was positive in all phases of the cell cycle studied, it was strongest in M cells and in the majority of middle G1 cells. Mg-ATPase activity was present in the plasma membranes of cells throughout the cell cycle, but did not show noticeable fluctuations in activity and distribution. Ca-ATPase activity appeared in plasma membranes and in limited areas of cell nuclei but was evident only in S phase cells. The results of the present study confirm and extend previous biochemical observations and indicate that changes in membrane phosphate activities are associated with enzyme activity redistributions within the plasma membrane during the HeLa S3 cell cycle.  相似文献   

18.
ABSTRACT. Freeze-cleave replicas of encysted cells of the myxamoebae of Physarum polycephalum were examined to determine the intrawall substructure and to compare the intramembrane structural components. Cleaved areas of the cyst wall revealed a laminated substructure devoid of the macromolecular interruptions (intramembrane particles or IMP) visible in the cleaved cell membranes. The cyst wall adjacent to the cell membrane appears laminated, and a loose branching network of fibers and fibrils occurs at the wall periphery. The absence of intrawall particles is interpreted as a lack of protein or polypeptide components, thus suggesting additional support for the conclusion that polysaccharides are the major wall constituents. When cleaved cell membranes of encysted cells were examined, more intramembrane particles per unit area were observed on the extracellular membrane leaflet than on the protoplasmic membrane leaflet. In addition, homogeneous as well as aggregated particle distributions were visible on cleaved membrane leaflets. Moreover, the presence of aggregated and unaggregated particles on the same membrane leaflets similarly suggests asynchrony of the cell population. This paper examines and compares biological processes involving the cell membrane that may be related to different stages in the cell cycle or to periods of temporary stasis during the cell cycle.  相似文献   

19.
The specific activity and subcellular distribution of marker enzymes for the main subcellular components were analysed in homogenates of synchronized hepatoma cells (Morris 7288c), obtained by selective detachment at mitosis combined with a metaphase block with Colcemid. Markers for lysosomes, mitochondrial outer membrane, plasma membrane and cytosol are synthesized throughout the cycle at the same rate as the bulk of cellular protein. Larger variations are observed for a Golgi marker; after a decrease around mitosis, the specific activity of galactosyltransferase increases steadily from middle G(1)-phase on, and at the end of G(2)-phase it is nearly twice that observed at the beginning of G(1)-phase. Our results show that synthesis of cytochrome oxidase may occur preferentially in G(2)-phase. Large modifications of the density distribution of lysosomes are observed during the cell cycle; the median equilibrium density of lysosomal markers decreases in G(1)-phase, and some increase in soluble activity occurs at the same time. Reverse changes occur progressively during S- and G(2)-phases. At mitosis, Golgi galactosyltransferase shows a more dispersed distribution, and modifications in the density distribution of endoplasmic-reticulum NADPH-cytochrome c reductase are observed. The latter can be most easily explained by a detachment of ribosomes from endoplasmic-reticulum membranes. No significant modifications occur in mitochondrial and plasma-membrane markers.  相似文献   

20.
P L McNeil 《Tissue & cell》1984,16(4):519-533
Freeze-fracture was used to compare the ultrastructure of plasma with phagosomal membranes of digestive cells of green hydra. Changes in both the pattern and density of intramembrane particles (IMP) were evident during the transition from plasma to phagosomal membrane. Small particle-free regions and associated aggregates of three to eight IMP were observed in presumptive adherent and enveloping plasma membranes, as well as in fully formed phagosomal membranes. Larger particle-free regions were observed as rims around the tips of enveloping membranes which had nearly completed enclosure of particles. The density of IMP in newly formed phagosomal membranes was 1.5-fold greater than that in the parent plasma membrane from which they derived, and was greater also than in older phagosomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号