首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of action underlying the ergogenic effect of caffeine is still unclear. Caffeine increases the force of muscular contraction during low-frequency stimulation by potentiating calcium release from the sarcoplasmic reticulum. Studies have also suggested an enhancement of lipid oxidation and glycogen sparing as potential mechanisms. Given that several studies have found an ergogenic effect of caffeine with no apparent metabolic effects, it is likely that a direct effect upon muscle is important. Twelve healthy male subjects were classified as habitual (n = 6) or nonhabitual (n = 6) caffeine consumers based on a 4-day diet record analysis, with a mean caffeine consumption of 771 and 14 mg/day for each group, respectively. Subjects were randomly allocated to receive caffeine (6 mg/kg) and placebo (citrate) in a double-blind, cross-over fashion approximately 100 min before a 2-min tetanic stimulation of the common peroneal nerve in a custom-made dynamometer (2 trials each of 20 and 40 Hz). Tetanic torque was measured every 30 s during and at 1, 5, and 15 min after the stimulation protocol. Maximal voluntary contraction strength and peak twitch torque were measured before and after the stimulation protocol. Caffeine potentiated the force of contraction during the final minute of the 20-Hz stimulation (P<0.05) with no effect of habituation. There was no effect of caffeine on 40-Hz stimulation strength nor was there an effect on maximal voluntary contraction or peak twitch torque. These data support the hypothesis that some of the ergogenic effect of caffeine in endurance exercise performance occurs directly at the skeletal muscle level.  相似文献   

2.
Effects of caffeine on neuromuscular function.   总被引:5,自引:0,他引:5  
This double-blind, repeated-measures study examined the effects of caffeine on neuromuscular function. Eleven male volunteers [22.3 +/- 2.4 (SD) yr] came to the laboratory for control, placebo, and caffeine (6 mg/kg dose) trials. Each trial consisted of 10 x 1-ms stimulation of the tibial nerve to elicit maximal H reflexes of the soleus, four attempts at a maximal voluntary contraction (MVC) of the right knee extensors, six brief submaximal contractions, and a 50% MVC held to fatigue. Isometric force and surface electromyographic signals were recorded continuously. The degree of maximal voluntary activation was assessed with the twitch-interpolation technique. Single-unit recordings were made with tungsten microelectrodes during the submaximal contractions. Voluntary activation at MVC increased by 3.50 +/- 1.01 (SE) % (P < 0. 01), but there was no change in H-reflex amplitude, suggesting that caffeine increases maximal voluntary activation at a supraspinal level. Neither the force-EMG relationship nor motor unit firing rates were altered by caffeine. Subjects were able to hold a 50% MVC for an average of 66.1 s in the absence of caffeine. Time to fatigue (T(lim)) increased by 25.80 +/- 16.06% after caffeine administration (P < 0.05). There was no significant change in T(lim) from pretest to posttest in the control or placebo trials. The increase in T(lim) was associated with an attenuated decline in twitch amplitude, which would suggest that the mechanism is, at least in part, peripheral.  相似文献   

3.
The effects of sustained and rhythmically performed isometric contractions on electrically evoked twitch and tetanic force generation of the triceps surae have been investigated in 4 healthy male subjects. The isometric contractions were performed separately and on different occasions at 30%, 60% and 100% of the force of maximal voluntary contraction (MVC). The area under the maximal voluntary contraction (MVC) force/time curve during the rhythmic and sustained contractions was the same for each experiment. The results showed that following rhythmic isometric exercise there was a small decrease in low (10 and 20 Hz) and high (40 Hz) frequency tetanic tension which was associated with % MVC. However, there was no change in the 20/40 ratio of tetanic forces, MVC or the contraction times and force of the maximal twitch. In contrast, following sustained isometric exercise tetanic forces were markedly reduced, particularly at low frequencies of stimulation. The 20/40 ratio decreased and the induced muscle weakness was greater at 30% than 60% or 100% MVC. The performance of sustained isometric contractions also effected a decrease in contraction time of the twitch and MVC. The results are in accord with previous findings for dynamic work (Davies and White 1982), and show that if isometric exercise is performed rhythmically the effect on tetanic tensions is small and there is no evidence of a preferential loss of electrically evoked force at either high or low frequencies of stimulation following the contractions. For sustained contractions, however, the opposite is true, the ratio of 20/40 Hz forces is markedly reduced and following 30% sustained MVC there is a significant (p less than 0.05) change in the time to peak tension (TPT) of the maximal twitch.  相似文献   

4.
The force enhancement of a twitch after a maximal conditioning muscle contraction [i.e., postactivation potentiation (PAP)] is reduced with aging, but its influence on the summation of force in response to repetitive stimulation at different frequencies is not known. The purpose of this work was to compare the electrically evoked mechanical responses of the tibialis anterior muscle between young and elderly adults after a 6-s maximal voluntary contraction (MVC). The results showed that, immediately after the conditioning MVC, twitch torque and its maximal rate of development and relaxation were significantly enhanced in both groups, but the magnitude of potentiation was greater in young (148.0 +/- 14.2, 123.7 +/- 16.5, and 185.4 +/- 36.5%, respectively) compared with elderly adults (87.4 +/- 15.2, 63.8 +/- 9.9, and 62.9 +/- 11.0%, respectively). This age-related difference in potentiation of the twitch disappeared completely 1 min after the conditioning MVC. The potentiation of torque and speed-related parameters in response to two- and three-pulse trains, delivered at a constant interval of 10 ms (100 Hz), was less than for a single pulse for both groups. In young adults, the magnitude of PAP on the successive individual mechanical contributions within a train of stimuli declined progressively such that the third contribution did not differ significantly from the same contribution before the conditioning MVC. In contrast, the second and third contributions did not potentiate (P > 0.05) in elderly adults. Although these contributions did potentiate significantly at a lower frequency of stimulation (20 Hz) in the two groups, the difference in PAP between young and elderly adults still persisted. This overall attenuation of potentiation with aging, however, appears to have a moderate influence on the decrement of the muscular performance.  相似文献   

5.
A set-up for percutaneous electrical stimulation of the forearm extensor muscles and measurement of wrist extension force is described. The frequency-force relationship and pulse duration-force relationship are described together with an experimental protocol showing that brief electrical test stimulations do not produce fatigue. In another set of experiments carried out a few weeks later, the subjects performed handgrip contractions: protocol A at 25% of maximal voluntary contraction (MVC) continuously until exhaustion, protocol B at 25% MVC intermittent (contraction + relaxation = 10 + 2 s) until exhaustion, and protocol C at 25% MVC intermittent until half the time to exhaustion. In all experiments, brief electrical stimulations were used to test the degree of fatigue during and up to 24 h after the experiments. There were marked changes in the force during stimulation at 20 and 100 Hz and these changes did not correlate with the increase in intramuscular temperature. Low frequency fatigue persisted for at least 24 h after protocol A and 1 h after protocols B and C. The significance of this is discussed and it is suggested that low frequency fatigue could be used as a sensitive indicator of muscle dysfunction after low and medium intensity exercise.  相似文献   

6.
Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies < or = 20 Hz, and it was maximal at frequencies > or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.  相似文献   

7.
This study investigated the effects of antioxidant vitamin supplementation upon muscle contractile function following eccentric exercise and was performed double blind. Twenty-four physically active young subjects ingested either placebo (400 mg; n = 8), vitamin E (400 mg; n=8) or vitamin C (400 mg; n = 8) for 21 days prior to and for 7 days after performing 60 min of box-stepping exercise. Contractile function of the triceps surae was assessed by the measurement of maximal voluntary contraction (MVC) and the ratio of the force generated at 20 Hz and 50 Hz tetanic stimulation before and after eccentric exercise and for 7 days during recovery. Following eccentric exercise, MVC decreased to 75 (4) % [mean (SE); n = 24; P < 0.05] of the preexercise values and the 20/50 Hz ratio of tetanic tension from 0.76 (0.01) to 0.49 (0.03) [mean (SE); n = 24; P<0.05). Compared to the placebo group no significant changes in MVC were observed immediately post-exercise, though recovery of MVC in the first 24 h post-exercise was greater in the group supplemented with vitamin C. The decrease in 20/50 Hz ratio of tetanic tension was significantly less (P < 0.05) post-exercise and in the initial phase of recovery in subjects supplemented with vitamin C but not with vitamin E. These data suggest that prior vitamin C supplementation may exert a protective effect against eccentric exercise-induced muscle damage.  相似文献   

8.
The purpose of this study was to investigate how reciprocal Ia inhibition is changed during muscle fatigue of lower limb muscle, induced with a voluntary contraction or height frequency electrical stimulation. Reciprocal Ia inhibition from ankle flexors to extensors has been investigated in 12 healthy subjects. Hoffmann reflex (H-reflex) in the soleus muscle was used to monitor changes in the amount of reciprocal Ia inhibition from common peroneal nerve as demonstrated during voluntary dorsi or planterflexion and 50 Hz electrical stimulation induced dorsi or planterflexion. The test soleus H-reflex was kept at 20-25% of maximum directly evoked motor response (M response) and the strength of the conditioning common peroneal nerve stimulation was kept at 1.0 x motor threshold. At rest, weak la inhibition was demonstrated in 12 subjects, maximal inhibition from the common peroneal nerve was 28.8%. During voluntary dorsiflexion and 50 Hz electrical stimulation induced dorsiflexion, there absolute amounts of inhibition increased as compared to at rest, and decreased or disappeared during voluntary planterflexion and 50 Hz electrical stimulation induced planterflexion as compared to at rest. During voluntary or electrical stimulation induced agonist muscle fatigue, the inhibition of the soleus H-reflex from the common peroneal nerve was greater during voluntary dorsiflexion (maximal, 11.1%) and 50 Hz (maximal, 6.7%) electrical stimulation induced dorsiflexion than at rest. The inhibition was decreased or disappeared during voluntary planterflexion 50 Hz electrical stimulation induced planterflexion. It was concluded that the results were considered to support the hypothesis that alpha-motoneurones and la inhibitory intemeurones link to antagonist motoneurones in reciprocal inhibition. The diminished reciprocal Ia inhibition of voluntary contraction during muscle fatigue as compared to electrical stimulation, is discussed in relation to its possible contribution to ankle stability.  相似文献   

9.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

10.
The effect of creatine and caffeine supplementation on muscle torque generation and relaxation was investigated in healthy male volunteers. Maximal torque (T(max)), contraction time (CT) from 0.25 to 0.75 of T(max), and relaxation time (RT) from 0.75 to 0.25 of T(max) were measured during an exercise test consisting of 30 intermittent contractions of musculus quadriceps (2 s stimulation, 2 s rest) that were induced by electrical stimulation. According to a double-blind randomized crossover design, subjects (n = 10) performed the exercise test before (pretest) and after (posttest) creatine supplementation (Cr, 4 x 5 g/day, 4 days), short-term caffeine intake (Caf, 5 mg x kg(-1) x day(-1), 3 days), creatine supplementation + short-term caffeine intake (Cr+Caf), acute caffeine intake (ACaf, 5 mg/kg) or placebo. Compared with placebo, Cr shortened RT by approximately 5% (P < 0.05). Conversely, Caf increased RT (+ approximately 10%, P < 0.05), in particular as RT increased because of fatigue. RT was not significantly changed by either Cr+Caf or ACaf. T(max) and CT were similar during all experimental conditions. Initial T(max) was approximately 20% of voluntary maximal isometric contraction force, which was not different between treatments. It is concluded that Caf intake (3 days) prolongs muscle RT and by this action overrides the shortening of RT due to creatine supplementation.  相似文献   

11.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

12.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

13.
The present study aimed to investigate the effects of repetitive muscle contractions on the elasticity of human tendon structures in vivo. Before and after each endurance test, the elongation of the tendon and aponeurosis of vastus lateralis muscle (L) was directly measured by ultrasonography while the subjects performed ramp isometric knee extension up to maximal voluntary isometric contraction (MVC). Six male subjects performed muscle endurance tests that consisted of knee extension tasks with four different contraction modes: 1) 50 repetitions of maximal voluntary eccentric action for 3 s with 3 s of relaxation (ET1), 2) three sets of 50 repetitions of MVC for 1 s with 3 s of relaxation (ET2), 3) 50 repetitions of MVC for 3 s with 3 s of relaxation (ET3), and 4) 50 repetitions of 50% MVC for 6 s with 6 s of relaxation (ET4). In ET1 and ET2, there were no significant differences in L values at any force production levels between before and after endurance tests. In the cases of ET3 and ET4, however, the extent of elongation after the completion of the tests tended to be greater. The L values above 330 N in ET3 and 440 N in ET4, respectively, were significantly greater after endurance tests than before. These results suggested that the repeated longer duration contractions would make the tendon structures more compliant and that the changes in the elasticity might be not be affected by either muscle action mode or force production level but by the duration of action.  相似文献   

14.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

15.
Our purpose was to determine the effect of eight different combinations of contraction intensity, duration, and rest on the rate of fatigue in vastus lateralis muscle. A single combination consisted of contractions at 30 or 70% maximal voluntary contraction (MVC), held for 3 or 7 s with 3- or 7-s rest intervals. Contractions were repeated until the subject could not hold the force for the requisite duration. At regular intervals during each experiment, a brief MVC, a single twitch, and the response to eight stimulation pulses at 50 Hz were elicited. The rate of fatigue was the rate of decline of MVC calculated from regression analysis. Mean rate of fatigue (n = 8) ranged from 0.3 to 25% MVC/min and was closely related (r = 0.98) to the product of the relative force and the duty cycle. Force from 50 Hz stimulation fell linearly and in parallel with MVC. Twitch force was first potentiated and then fell twice as fast as 50 Hz stimulation and MVC (p less than 0.05). Differentiated twitch contraction and relaxation rates were higher at potentiation and lower at the limit of endurance, compared with control values (p less than 0.05). The maximal electromyogram decreased 25% and the submaximal EMG increased to maximal by the end of the protocol, indicating that the entire motor unit pool had been recruited. The close relation between rate of fatigue and the force x time product probably reflects the off-setting interaction of contraction amplitude, duration, and rest interval. This occurs despite the changes in twitch characteristics and the apparent recruitment of fast fatiguing motor units.  相似文献   

16.
Healthy untrained men performed 10 series of 12 knee eccentric extension repetitions (EE) at 160°/s. The maximal voluntary isometric contraction force of the quadriceps muscle, the maximal rate of electrically induced torque development (RTD) and relaxation (RTR), isokinetic concentric torque at 30°/s, the electrostimulation-induced torque at 20 and 100 Hz frequencies were established before and after EE at shorter and longer muscle lengths. Besides, voluntary activation (VA) index and central activation ratio (CAR) were tested. There was more peripheral fatigue than central after EE. We established more central fatigue as well as low frequency fatigue at a shorter muscle length compared to the longer muscle length. Relative RTD as well as relative RTR, improved after EE and did not depend on the muscle length. Finally, central fatigue is inversely significantly related with the eccentric torque reduction during eccentric exercise and with the changes in muscle torque induced by low frequency stimulation.  相似文献   

17.
The 24 h recovery pattern of contractile properties of the triceps surae muscle, following a period of muscle fatigue, was compared in physically active young (25 years, n = 10) and elderly (66 years, n = 7) men. The fatigue test protocol consisted of 10 min of intermittent submaximal 20 Hz tetani. The maximal twitch (Pt) and tetanic force at 3 frequencies (10, 20 and 50 Hz) were determined at baseline and at 15 min, 1, 4 and 24 h after fatiguing the muscle. Maximal voluntary contraction (MVC) and vertical jump (MVJ) were also assessed. The loss of force during the fatigue test was not significantly different between the young (18 +/- 13%) and elderly (22 +/- 15%). Both groups showed similar and significant reductions of Pt (15%), tetanic force (10 to 35%) and rate of force development (dp/dt) (20%) 15 min and 1 h into recovery. The loss of force was greater at the lower stimulation frequencies of 10 and 20 Hz. Time-to-peak tension was unchanged from baseline during recovery in either group. The average rate of relaxation of twitch force (-dPt/dt) was decreased (p less than 0.05) and half-relaxation time significantly increased at 15 min and 1 h in the elderly but not the young. The findings indicate that after fatiguing contractions, elderly muscle demonstrates a slower return to resting levels of the rate and time course of twitch relaxation compared to the young.  相似文献   

18.
Electrical stimulation (1-ms pulses, 100 Hz) produces more torque than expected from motor axon activation (extra contractions). This experiment investigates the most effective method of delivering this stimulation for neuromuscular electrical stimulation. Surface stimulation (1-ms pulses; 20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s) was delivered to triceps surae and wrist flexors (muscle stimulation) and to median and tibial nerves (nerve stimulation) at two intensities. Contractions were evaluated for amplitude, consistency, and stability. Surface electromyograph was collected to assess how H-reflexes and M-waves contribute. In the triceps surae, muscle stimulation produced the largest absolute contractions (23% maximal voluntary contraction), evoked the largest extra contractions as torque increased by 412% after the 100-Hz stimulation, and was more consistent and stable compared with tibial nerve stimulation. Absolute and extra contraction amplitude, consistency, and stability of evoked wrist flexor torques were similar between stimulation types: torques reached 11% maximal voluntary contraction, and extra contractions increased torque by 161%. Extra contractions were 10 times larger in plantar flexors compared with wrist flexors with muscle stimulation but were similar with nerve stimulation. For triceps surae, H reflexes were 3.4 times larger than M waves during nerve stimulation, yet M waves were 15 times larger than H reflexes during muscle stimulation. M waves in the wrist flexors were larger than H reflexes during nerve (8.5 times) and muscle (18.5 times) stimulation. This is an initial step toward utilizing extra contractions for neuromuscular electrical stimulation and the first to demonstrate their presence in the wrist flexors.  相似文献   

19.
The purpose of this study was to compare fatigue and recovery of maximal voluntary torque [maximal voluntary contraction (MVC)] and muscle oxygenation after voluntary (Vol) and electrically stimulated (ES) protocols of equal torque production. On 1 day, 10 male subjects [25 yr (SD 4)] completed a Vol fatigue protocol and, on a separate day, an ES fatigue protocol of the right dorsiflexors. Each task involved 2 min of intermittent (2-s on, 1-s off) isometric contractions at 50% of MVC. For the ES protocol, stimulation was delivered percutaneously to the common peroneal nerve at a frequency of 25 Hz. Compared with the Vol protocol, the ES protocol caused a greater impairment in MVC (75 vs. 83% prefatigue value; Pre) and greater increase in 50-Hz half relaxation time (165 vs. 117% Pre) postexercise. After acute (1 min) recovery, MVC impairment was similar for both protocols, whereas 50- Hz half relaxation time was still greater in the ES than Vol protocol. Total hemoglobin decreased to a similar extent in both protocols during exercise, but it was elevated above the resting value to a significantly greater extent for the ES protocol in recovery (18 vs. 11 microM). Oxygen saturation was significantly lower in the ES than Vol protocol during exercise (46 vs. 57% Pre), but it was significantly greater during recovery (120 vs. 105% Pre). These findings suggest that despite, equal torque production, ES contractions impose a greater metabolic demand on the muscle that leads to a transient greater impairment in MVC. The enforced synchronization and fixed frequency of excitation inherent to ES are the most likely causes for the exacerbated changes in the ES compared with the Vol protocol.  相似文献   

20.
Recording a superimposed electrically-induced contraction at the limit of endurance during voluntary contraction is used as an indicator of failure of muscle activation by the central nervous system and discards the existence of peripheral muscle fatigue. We questioned on the reliability of this method by using other means to explore peripheral muscle failure. Fifteen normal subjects sustained handgrip at 60% of maximal voluntary contraction (MVC) until exhaustion. During sustained contraction, the power spectrum analysis of the flexor digitorum surface electromyogram allowed us to calculate the leftward shift of median frequency (MF). A superimposed 60 Hz 3 s pulse train (burst superimposition) was delivered to the muscle when force levelled off close to the preset value. Immediately after the fatigue trial had ended, the subject was asked to perform a 5 s 60% MVC and we measured the peak contractile response to a 60 Hz 3 s burst stimulation. Recordings of the compound evoked muscle action potential (M-wave) allowed us to explore an impairment of neuromuscular propagation. A superimposed contraction was measured in 7 subjects in their two forearms, whereas it was absent in the 8 others. Despite these discrepancies, all subjects were able to reproduce a 3 s 60% MVC immediately after the fatigue trial ended and there was no post-fatigue decrease of contraction elicited by the 60 Hz 3 s burst stimulation, as well as no M-wave decrease in amplitude and conduction time. Thus, there was no indication of peripheral muscle fatigue. MF decrease was present in all individuals throughout the fatiguing contraction and it was not correlated with the magnitude of superimposed force. These observations indicate that an absence of superimposed electrically-induced muscle contraction does not allow us to conclude the existence of a sole peripheral muscle fatigue in these circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号