首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gene expression in eukaryotes depends upon positioning, mobility and packaging of nucleosomes; thus, we need the detailed information of the human nucleosome core particle (NCP) structure, which could clarify chromatin properties. Here, we report the 2.5 Å crystal structure of a human NCP. The overall structure is similar to those of other NCPs reported previously. However, the DNA path of human NCP is remarkably different from that taken within other NCPs with an identical DNA sequence. A comparison of the structural parameters between human and Xenopus laevis DNA reveals that the DNA path of human NCP consecutively shifts by 1 bp in the regions of superhelix axis location −5.0 to −2.0 and 5.0 to 7.0. This alteration of the human DNA path is caused predominantly by tight DNA–DNA contacts within the crystal. It is also likely that the conformational change in the human H2B tail induces the local alteration of the DNA path. In human NCP, the region with the altered DNA path lacks Mn2+ ions and the B-factors of the DNA phosphate groups are substantially high. Therefore, in contrast to the histone octamer, the nucleosomal DNA is sufficiently flexible and mobile and can undergo drastic conformational changes, depending upon the environment.  相似文献   

3.
The helical model of the nucleosome core.   总被引:2,自引:2,他引:0       下载免费PDF全文
A model of the nucleosome core is proposed based on a topologically linear array of histones attached sequentially to DNA. The linear complex folds helically forming a spring-like particle. Different variants of the particle are discussed (cylindrical springs with and without histone-histone contacts between turns of the helix, solenoidal spring). The model is consistent with known data about the nucleosome structure. Histones H3 and H4 have a special role in the model which is related also to the superstructure of chromatin.  相似文献   

4.
5.
The effects of sodium chloride concentration on the structure of chicken erythrocyte nucleosome core particles have been studied by the use of fluorescently labelled histones. Histone H3 was modified with two sulfhydryl-specific dyes and reconstituted into core nucleosomes. Between 10?4 m and 0.6 M-NaCl four different states were observed by the fluorescent techniques of collisional quenching, polarization and energy transfer. Below 5 × 10?4 m-NaCl the nucleosome is flexible, with the single cysteine residues of the two H3 species about 48 Å apart and somewhat exposed. Between 5 × 10?3 m and 10?1 m-NaCl the nucleosome is rigid and non-spherical. The cysteine residues are close together and buried. Between 10?1 m and 4 × 10?1 m-NaCl, the cysteines become slightly more exposed but remain close together. At 6 × 10?1 m-NaCl the nucleosome is very flexible. The cysteines are more than 70 Å apart and are quite exposed. The dramatic structural changes that are observed in core nucleosomes are consistent with the variety of functions in which they must participate in the cell.  相似文献   

6.
7.
8.
9.
Among the multiple effects involved in chromatin condensation and decondensation processes, interactions between nucleosome core particles are suspected to play a crucial role. We analyze them in the absence of linker DNA and added proteins, after the self-assembly of isolated nucleosome core particles under controlled ionic conditions. We describe an original lamellar mesophase forming tubules on the mesoscopic scale. High resolution imaging of cryosections of vitrified samples reveals how nucleosome core particles stack on top of one another into columns which themselves align to form bilayers that repel one another through a solvent layer. We deduce from this structural organization how the particles interact through attractive interactions between top and bottom faces and lateral polar interactions that originate in the heterogeneous charge distribution at the surface of the particle. These interactions, at work under conditions comparable with those found in the living cell, should be of importance in the mechanisms governing chromatin compaction in vivo.  相似文献   

10.
Structure of the nucleosome core particle at 8 A resolution   总被引:1,自引:0,他引:1  
The x-ray crystallographic structure of the nucleosome core particle has been determined using 8 A resolution diffraction data. The particle has a mean diameter of 106 A and a maximum thickness of 65 A in the superhelical axis direction. The longest chord through the histone core measures 85 A and is in a non-axial direction. The 1.87 turn superhelix consists of B-DNA with about 78 base pairs or 7.6 helical repeats per superhelical turn. The mean DNA helical repeat contains 10.2 +/- 0.05 base pairs and spans 35 A, slightly more than standard B-DNA. The superhelix varies several Angstroms in radius and pitch, and has three distinct domains of curvature (with radii of curvature of 60, 45 and 51 A). These regions are separated by localized sharper bends +/- 10 and +/- 40 base pairs from the center of the particle, resulting in an overall radius of curvature about 43 A. Compression of superhelical DNA grooves on the inner surface and expansion on the outer surface can be seen throughout the DNA electron density. This density has been fit with a double helical ribbon model providing groove width estimates of 12 +/- 1 A inside vs. 19 +/- 1 A outside for the major groove, and 8 +/- 1 A inside vs. 13 +/- 1 A outside for the minor groove. The histone core is primarily contained within the bounds defined by the superhelical DNA, contacting the DNA where the phosphate backbone faces in toward the core. Possible extensions of density between the gyres have been located, but these are below the significance level of the electron density map. In cross-section, a tripartite organization of the histone octamer is apparent, with the tetramer occupying the central region and the dimers at the extremes. Several extensions of histone density are present which form contacts between nucleosomes in the crystal, perhaps representing flexible or "tail" histone regions. The radius of gyration of the histone portion of the electron density is calculated to be 30.4 A (in reasonable agreement with solution scattering values), and the histone core volume in the map is 93% of its theoretical volume.  相似文献   

11.
X-ray structure of the nucleosome core particle   总被引:2,自引:0,他引:2  
Two monoclinic crystal forms (P2(1),C2) of chicken erythrocyte nucleosomes have been under study in this laboratory. The x-ray structure of the P2(1) crystal form has been solved to 15 A resolution. The B-DNA superhelix has a relatively uniform curvature, with only several local distortions observed in the superhelix. The individual histone domains have been localized and specific contacts between each histone and the DNA can be observed. Histone contacts to the inner surface of the DNA superhelix occur predominantly at the minor groove sites. Most of the histone core is contained within the inner surface of the superhelical DNA, except for part of H2A which extends between the DNA gyres near the terminus of the DNA. No part of H2A blocks the DNA terminus or would prevent a smooth exit of the DNA into the linker region. A similar extension of a portion of histone H4 between the DNA gyres occurs close to the dyad axis. Both unique nucleosomes in the P2(1) asymmetric unit demonstrate good dyad symmetry and are similar to each other throughout the histone core and DNA regions.  相似文献   

12.
A direct correlation exists between the level of histone H4 hyperacetylation induced by sodium butyrate and the extent to which nucleosomes lose their compact shape and become elongated (62.0% of the particles have a length/width ratio over 1.6; overall mean in the length/width ratio = 1.83 +/- 0.48) when bound to electron microscope specimen grids at low ionic strength (1mM EDTA, 10mM Tris, pH 8.0). A marked proportion of elongated core particles is also observed in the naturally occurring hyperacetylated chicken testis chromatin undergoing spermatogenesis when analyzed at low ionic strength (36.8% of the particles have a length/width ratio over 1.6). Core particles of elongated shape (length/width ratio over 1.6) generated under low ionic strength conditions are absent in the hypoacetylated chicken erythrocyte chromatin and represent only 2.3% of the untreated Hela S3 cell core particles containing a low proportion of hyperacetylated histones. The marked differences between control and hyperacetylated core particles are absent if the particles are bound to the carbon support film in the presence of 0.2 M NaCl, 6mM MgCl2 and 10mM Tris pH 8.0, conditions known to stabilize nucleosomes. A survey of the published work on histone hyperacetylation together with the present results indicate that histone hyperacetylation does not produce any marked disruption of the core particle 'per se', but that it decreases intranucleosomal stabilizing forces as judged by the lowered stability of the hyperacetylated core particle under conditions of shearing stress such as cationic competition by the carbon support film of the EM grid for DNA binding.  相似文献   

13.
DNA motions in the nucleosome core particle: a reanalysis   总被引:3,自引:0,他引:3  
J M Schurr  R L Schurr 《Biopolymers》1985,24(10):1931-1940
  相似文献   

14.
Using in vitro replication assays, we compared native with salt-treated simian virus 40 minichromosomes isolated from infected cell nuclei. Minichromosomes from both preparations contain the full complement of nucleosomes, but salt treatment removes histone H1 and a fraction of nonhistone chromatin proteins. Both types of minichromosomes served well as templates for in vitro replication, but the structures of the replication products were strikingly different. Replicated salt-treated minichromosomes contained, on average, about half the normal number of nucleosomes as previously shown (T. Krude and R. Knippers, Mol. Cell. Biol. 11:6257-6267, 1991). In contrast, the replicated untreated minichromosomes were found to be densely packed with nucleosomes, indicating that an assembly of new nucleosomes occurred during in vitro replication. Biochemical and immunological data showed that the fraction of nonhistone chromatin proteins associated with native minichromosomes includes a nucleosome assembly activity that appears to be closely related to chromatin assembly factor I (S. Smith and B. W. Stillman, Cell 58:15-25, 1989). Furthermore, this minichromosome-bound nucleosome assembly factor is able to exert its activity in trans to replicating protein-free competitor DNA. Thus, native chromatin itself contains the activities required for an ordered assembly of nucleosomes during the replication process.  相似文献   

15.
We present a phase diagram of the nucleosome core particle (NCP) as a function of the monovalent salt concentration and applied osmotic pressure. Above a critical pressure, NCPs stack on top of each other to form columns that further organize into multiple columnar phases. An isotropic (and in some cases a nematic) phase of columns is observed in the moderate pressure range. Under higher pressure conditions, a lamello-columnar phase and an inverse hexagonal phase form under low salt conditions, whereas a 2D hexagonal phase or a 3D orthorhombic phase is found at higher salt concentration. For intermediate salt concentrations, microphase separation occurs. The richness of the phase diagram originates from the heterogeneous distribution of charges at the surface of the NCP, which makes the particles extremely sensitive to small ionic variations of their environment, with consequences on their interactions and supramolecular organization. We discuss how the polymorphism of NCP supramolecular organization may be involved in chromatin changes in the cellular context.  相似文献   

16.
We have examined the structures of unique sequence, A/T-rich DNAs that are predicted to be relatively rigid [oligo(dA).oligo(dT)], flexible [oligo[d(A-T)]], and curved, using the hydroxyl radical as a cleavage reagent. A 50-base-pair segment containing each of these distinct DNA sequences was placed adjacent to the T7 RNA polymerase promoter, a sequence that will strongly position nucleosomes. The final length of the DNA fragments was 142 bp, enough DNA to assemble a single nucleosome. Cleavage of DNA in solution, while bound to a calcium phosphate crystal, and after incorporation into a nucleosome is examined. We find that the distinct A/T-rich DNAs have very different structural features in solution and helical periodicities when bound to a calcium phosphate. In contrast, the organization of the different DNA sequences when associated with a histone octamer is very similar. We conclude that the histone core exerts a dominant constraint on the structure of DNA in a nucleosome and that inclusion of these various unique sequences has only a very small effect on overall nucleosome stability and structure.  相似文献   

17.
18.
Binding of linker histones to the core nucleosome   总被引:1,自引:0,他引:1  
Binding of chicken erythrocyte linker histones H1/H5 to the core nucleosome has been studied. Histones H1/H5 bind very efficiently to the isolated core nucleosome in vitro. The binding of linker histones to the core nucleosome is associated with aggregation of the particles. Approximately one molecule of linker histone binds per core nucleosome in the aggregates, irrespective of the concentration of the linker histones and the salt used. Histone H5 shows greater binding affinity to the core nucleosome as compared to H1. The carboxyl-terminal fragment of the linker histones binds strongly to the core nucleosome while the binding of the central globular domain is weak. Each core nucleosome is capable of binding two molecules of carboxyl-terminal fragment of linker histone. The core nucleosome containing one molecule of carboxyl-terminal fragment of linker histone requires higher salt concentration for aggregation while the core nucleosome containing two molecules of carboxyl-terminal fragment of linker histone can self-associate even at lower salt concentrations. On the basis of these results we are proposing a novel mechanism for the condensation of chromatin by linker histones and other related phenomena.  相似文献   

19.
20.
Echinomycin and distamycin induce rotation of nucleosome core DNA.   总被引:1,自引:7,他引:1       下载免费PDF全文
C M Low  H R Drew    M J Waring 《Nucleic acids research》1986,14(17):6785-6801
When nucleosome cores reconstituted from chicken erythrocyte histones and a 160 bp DNA molecule are exposed to echinomycin, a bis-intercalating antitumour antibiotic, the DNA appears to rotate with respect to the histone octamer by about half a turn. New bands appear in patterns of DNAase I digestion at positions approximately mid-way between those characteristic of control core samples, while the control pattern is largely suppressed. Similar (but not identical) changes are produced when nucleosome cores are exposed to distamycin, a non-intercalating DNA-binding antibiotic. The effects of both ligands can be explained in terms of a change in rotational orientation of the core DNA, so as to place antibiotic binding sites on the inward-facing (concave) surface of the DNA supercoil. Presumably this serves to optimise non-bonded contacts with the polynucleotide backbone. These results establish that the positioning of DNA about the histone octamer is not absolutely determined by its nucleotide sequence, but may be modified by the binding of such relatively small molecules as antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号