首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aqueous humor is formed by the bilayered ciliary epithelium. The pigmented ciliary epithelium (PE) faces the stroma and the nonpigmented ciliary epithelium (NPE) contacts the aqueous humor. Cl secretion likely limits the rate of aqueous humor formation. Many transport components underlying Cl secretion are known. Cl is taken up from the stroma into PE cells by electroneutral transporters, diffuses to the NPE cells through gap junctions and is released largely through Cl channels. Recent work suggests that significant Cl recycling occurs at both surfaces of the ciliary epithelium, providing the basis for modulation of net secretion. The PE-NPE cell couplet likely forms the fundamental unit of secretion; gap junctions within the PE and NPE cell layers are inadequate to maintain constancy of ionic composition throughout the epithelium under certain conditions. Although many hormones, drugs and signaling cascades are known to have effects, a persuasive model of the regulation of aqueous humor formation has not yet been developed. cAMP likely plays a central role, potentially both enhancing and reducing secretion by actions at both surfaces of the ciliary epithelium. Among other hormone receptors, A3 adenosine receptors likely alter intraocular pressure by regulating NPE-cell Cl channel activity. Recently, functional evidence for the regional variation in ciliary epithelial secretion has been demonstrated; the physiologic and pathophysiologic implications of this regional variation remain to be addressed.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

2.
The rate of aqueous humor formation sequentially across the pigmented (PE) and nonpigmented (NPE) ciliary epithelial cell layers may not be uniform over the epithelial surface. Because of the tissue's small size and complex geometry, this possibility cannot be readily tested by conventional techniques. Rabbit iris-ciliary bodies were divided, incubated, quick-frozen, cryosectioned, and freeze-dried for electron probe X-ray microanalysis of the elemental contents of the PE and NPE cells. We confirmed that preincubation with ouabain to block Na(+),K(+)-ATPase increases Na(+) and decreases K(+) contents far more anteriorly than posteriorly. The anterior and posterior regions were the iridial portion of the primary ciliary processes and the pars plicata, respectively. Following interruption of gap junctions with heptanol, ouabain produced smaller changes in anterior PE cells, possibly reflecting higher Na(+) or K(+) permeability of anterior NPE cells. Inhibiting Na(+) entry selectively with amiloride, benzamil, or dimethylamiloride reduced anterior effects of ouabain by approximately 50%. Regional dependence of net secretion was also assessed with hypotonic stress, which stimulates ciliary epithelial cell regulatory volume decrease (RVD) and net Cl(-) secretion. In contrast to ouabain's actions, the RVD was far more marked posteriorly than anteriorly. These results suggest that 1) enhanced Na(+) reabsorption anteriorly, likely through Na(+) channels and Na(+)/H(+) exchange, mediates the regional dependence of ouabain's actions; and 2) secretion may proceed primarily posteriorly, with secondary processing and reabsorption anteriorly. Stimulation of anterior reabsorption might provide a novel strategy for reducing net secretion.  相似文献   

3.
The eye’s aqueous humor is secreted by a bilayered ciliary epithelium comprising pigmented (PE) and nonpigmented (NPE) epithelial cell layers. Stromal Cl enters the PE cells and crosses gap junctions to the NPE cells for release into the aqueous humor. Maxi-Cl channels are expressed in PE cells, but their physiological significance is unclear. To address this question, excised patches and whole native bovine PE cells were patch clamped, and volume was monitored by calcein fluorescence. In symmetrical 130 mM NaCl, cAMP at the cytoplasmic surface of inside-out patches produced concentration-dependent activation of maxi-Cl channels with a unitary conductance of 272 ± 2 pS (n = 80). Voltage steps from 0 to ±80 mV, but not to ±40 mV, produced rapid channel inactivation consistent with the typical characteristics of maxi-Cl channels. cAMP also activated the maxi-Cl channels in outside-out patches. In both cases, maxi-Cl channels were reversibly inhibited by SITS and 5-nitro-2-(phenylpropylamino)benzoate (NPPB). Decreasing cytoplasmic Cl concentration reduced both open-channel probability and unitary conductance. Similarly, the membrane-permeant 8-bromo-cAMP stimulated outward and inward whole cell currents; the stimulation was larger at higher intracellular Cl concentration. As with unitary currents, cAMP-triggered whole cell currents displayed inactivation at ±80 but not at ±40 mV. Moreover, cAMP triggered NPPB-sensitive shrinkage of PE cells. The results suggest that cAMP directly activates maxi-Cl channels of native PE cells that contribute to Cl release particularly from Cl-loaded cells. These cAMP-activated channels provide a potential mechanism for reducing and modulating net aqueous humor secretion by facilitating Cl reabsorption into the ciliary stroma. cell volume; chloride secretion; aqueous humor formation  相似文献   

4.
Ultrastructural localization of Na+,K+-ATPase in rat ciliary epithelium was investigated quantitatively by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of Na+,K+-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha-subunit of Na+,K+-ATPase in the ciliary body. Gold particles were found mainly on the basolateral surfaces of both the pigmented epithelial (PE) and nonpigmented epithelial (NPE) cells with an approximately twofold higher labeling density in the PE cells. A few gold particles were also found on the apical and ciliary channel surfaces of the PE cells, whereas no significant binding was found on the apical surfaces of the NPE cells. The basolateral surfaces of PE and NPE cells are markedly infolded and are much greater in area than the apical surfaces. This means that Na+,K+-ATPase is almost exclusively located on the basolateral surfaces of both the NPE and PE cells. We suggest that the Na+,K+-ATPase of both the NPE and PE cells play an important role in the formation of aqueous humor.  相似文献   

5.
Summary Cholera toxin reduces the rate of formation of aqueous humor in concentrations (10–11 M) that do not disturb the morphology of the aqueoushumor forming epithelial cells of the ciliary processes of the rabbit eye. The search for an endogenous mediator of aqueous-humor formation comparable to cholera toxin in its mode of operation prompted us to map the distribution of cell surface receptors for cholera toxin in the ciliary processes of the eyes of rabbits. Cytochemical studies were carried out with the use of conjugates of cholera toxin to fluorescein isothiocyanate (CT-FITC) and to horseradish peroxidase (CT-HRP), and of the B subunit of cholera toxin to horseradish peroxidase (B-HRP). Multiple fluorescent CT-FITC binding sites were observed on the outer nonpigmented epithelial layer near the crests of the processes. Processes incubated with CT-HRP in vitro showed surface staining of 30–40% of the nonpigmented epithelial cells. A prominent reaction product was observed along the basal and lateral plasma membranes of these cells. In vivo studies carried out after arterial infusion of B-HRP showed a reproducible dense reaction product between the apical surfaces of the pigmented epithelium (PE) and of the nonpigmented epithelium (NPE) facing each other. Aggregations of reaction product were observed with the electron microscope in the extracellular space between the apices of PE and NPE. The apical plasma membrane of the endothelium of the blood vessels near the crests of the ciliary processes was stained after either in vivo or in vitro exposure to peroxidase conjugates. These findings indicate that the cell-surface receptors which mediate the action of cholera toxin on aqueous humor formation are very likely localized in the apical plasma membranes of the epithelium of the ciliary processes.Supported in part by USPHS grant # EY-00237, the Connecticut Lions Eye Research Foundation, Inc., and Research to Prevent Blindness, Inc.  相似文献   

6.
Early study of transepithelial salt transfer focused on Cl(-) and not Na(+), partly because Cl(-) was readily measureable. The advent of flame photometry and tracer techniques brought Na(+) to the fore, especially since short-circuited frog skin (Rana temporaria) produces baseline net movement of Na(+) and not of Cl(-). Zadunaisky was among the first to describe what is currently termed secondary active Cl(-) transport, helping stimulate interest in Cl(-) handling by other tissues, notably the thick ascending limb of the loop of Henle important in renal counter-current multiplication. More recently, molecules responsible for electroneutral and electrogenic Cl(-) transfer have been cloned, and specific diseases resulting from their faulty expression have been identified. The clinical importance of transepithelial Cl(-) transfer is illustrated by studies of aqueous humor formation by the eye's bilayered ciliary epithelium. NaCl is taken up from the stroma by the pigmented ciliary epithelial (PE) layer, diffuses through gap junctions into the nonpigmented ciliary epithelial (NPE) layer, and is released into the aqueous humor largely through Na(+) pumps and Cl(-) channels. ATP released by NPE cells can be ecto-enzymatically metabolized to adenosine. Adenosine can mediate paracrine/autocrine stimulation of Cl(-) channels and aqueous humor secretion by occupying A(3) adenosine receptors (ARs). A(3)AR agonists indeed elevate, and A(3)AR antagonists lower, intraocular pressure (IOP) in wild-type mice. A(3)AR knockout mice have low IOP and their responses to A(3)AR agonists and antagonists are blunted; this suggests that reducing Cl(-)-channel activity with A(3)AR antagonists may provide a novel approach for treating glaucoma.  相似文献   

7.
ATP release by nonpigmented (NPE) and pigmented (PE) ciliary epithelial cells is the enabling step in purinergic regulation of aqueous humor formation, but the release pathways are unknown. We measured ATP release from primary cultures of bovine mixed NPE and PE (bCE) cells and transformed bovine NPE and PE cells, using the luciferin-luciferase reaction. Hypotonicity-triggered bCE ATP release was inhibited by the relatively selective blocker of pannexin-1 (PX1) hemichannels (probenecid, 1 mM, 47 ± 2%), by a connexin inhibitor (heptanol, 1 mM, 49 ± 4%), and by an inhibitor of vesicular release (bafilomycin A1, 25 ± 2%), but not by the P2X(7) receptor (P2RX(7)) antagonist KN-62. Bafilomycin A1 acts by reducing the driving force for uptake of ATP from the cytosol into vesicles. The reducing agent dithiothreitol reduced probenecid-blockable ATP release. Similar results were obtained with NPE and PE cell lines. Pannexins PX1-3, connexins Cx43 and Cx40, and P2RX(7) were identified in native cells and cell lines by RT-PCR. PX1 mRNA expression was confirmed by Northern blots; its quantitative expression was comparable to that of Cx43 by real-time PCR. Heterologous expression of bovine PX1 in HEK293T cells enhanced swelling-activated ATP release, inhibitable by probenecid. We conclude that P2RX(7)-independent PX1 hemichannels, Cx hemichannels, and vesicular release contribute comparably to swelling-triggered ATP release. The relatively large response to dithiothreitol raises the possibility that the oxidation-reduction state is a substantial regulator of PX1-mediated ATP release from bovine ciliary epithelial cells.  相似文献   

8.
The natriuretic peptides (NPs) atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) display hypotensive effects in the mammalian eye by lowering the intraocular pressure (IOP), a function that is mediated by the bilayer ocular ciliary epithelium (CE), in conjunction with the trabecular meshwork. ANP regulates Na+/H+ exchanger (NHE) activity, and inhibitors of NHE have been shown to lower IOP. We examined whether NPs influence the NHE activity of the CE, which is comprised of pigmented (PE) and nonpigmented (NPE) epithelial cells, by directly recording the rate of intracellular pH (pHi) recovery from its inner NPE cell layer. NPs inhibited, in a dose-dependent manner (1–100 nM), the rate of pHi recovery with the order of potency CNP > ANP > BNP, indicative that this inhibition is mediated by the presence of NPR type B receptors. 8-Bromo-cGMP (8-BrcGMP), a nonhydrolyzable analog of cGMP, mimicked NPs in inhibiting the rate of Na+-dependent pHi recovery. In contrast, ethylisopropyl amiloride (EIPA, 100 nM) or amiloride (10 µM) completely abolished the pHi recovery by NHE. 18-Glycyrrhetinic acid (18-GA), a gap junction blocker, attenuated the inhibitory effect of CNP on the rate of pHi recovery, suggesting that NHE activity in both cell layers of the CE is coregulated. This interpretation was supported, in part, by the coexpression of NHE-1 isoform mRNA in both NPE and PE cells. The mechanism by which the inhibitory effect of NPs on NHE-1 activity might influence the net solute movement or fluid transport by the bilayer CE remains to be determined. Na+/H+ exchanger type 1; intracellular pH; aqueous humor  相似文献   

9.
For study of the origin of glucose in the aqueous humor, glucose-6-phosphatase (G6Pase) and hexokinase activities, and glycogen, were cytochemically examined in the ciliary body (CB) of rabbit. G6Pase activity was also assayed biochemically. The staining reaction for G6Pase activity was strong in the non-pigmented epithelium (NPE) in the pars plana and tips of ciliary processes in the region containing large ciliary pockets within the pars plicata. NPE cells contained abundant reaction product for G6Pase activity in the endoplasmic reticulum (ER) and nuclear envelope. However, NPE in other regions of the CB and pigmented epithelium (PE) of CB, and other areas surrounding the anterior and (PE) of CB, and other areas surrounding the anterior and posterior chambers, showed weak or no G6Pase staining reaction. Biochemical G6Pase activity in the whole ciliary body was relatively high. Both NPE and PE in the pars plana and the tips showed strong staining reaction for hexokinase activity but no staining for glycogen. Furthermore, NPE cells in the tips bore large aggregates of smooth ER and many Golgi apparati. These suggest that the high G6Pase activity in NPE cells in the pars plana and the tips is related to glucose release into the aqueous humor.  相似文献   

10.
Distinct structural changes occur in the rabbit ciliary epithelium following intravitreal injection of prostaglandin E1 (PGE1). Up to four hours after PGE1 administration, alteration of the pigmented epithelium was characterized by dilated intercellular spaces and the disruption of many intercellular junctions. The nonpigmented epithelium demonstrates a spectrum of morphologic variation from only some thinning of cytoplasmic processes to areas of severe distortion. In these regions, marked thinning of the nonpigmented cells occurs in association with an absence of apical tight junctions. This alteration of the nonpigmented epithelium and its tight junctions allows for the leakage of proteins into the posterior chamber which is consistent with the breakdown in the blood-aqueous barrier. The temporal sequence of these changes would suggest a differential susceptibility of the pigmented and nonpigmented layers with the pigmented layers being affected earliest and the nonpigmented epithelium altered subsequently. The recovery of this epithelial change was rapid and complete and demonstrated the transient effects of PG on the ciliary epithelium with recovery of the blood-aqueous function by 8 hours after injection.  相似文献   

11.
The aim of this study is to determine the contribution of the ciliary epithelium to glutathione (GSH) levels in the aqueous by mapping GSH metabolism and transport pathways in the rat ciliary body. Using a combination of molecular and immunohistochemical techniques, we screened and localised enzymes and transporters involved in GSH synthesis, uptake, efflux and degradation. Our findings indicate that both the pigmented epithelial (PE) and the non-pigmented epithelial (NPE) cell layers are capable of accumulating precursor amino acids for GSH synthesis, but only the NPE cells appear to be involved in the direct uptake of precursor amino acids from the stroma. The localisation of GSH efflux transporters to the PE cell and PE–NPE interface indicates that GSH and potentially GSH-S conjugates can be removed from the ciliary epithelium into the stroma, while the location of GSH efflux transporters to the basolateral membrane of the NPE indicates that these cells can mediate GSH secretion into the aqueous. GSH secreted by the ciliary into the aqueous would remain largely intact due to the absence of the GSH degradation enzymes γ-glutamyltranspeptidase (γ-GGT) labelling at the basolateral membrane of the NPE. Therefore, it appears that the ciliary epithelium contains the molecular machinery to mediate GSH secretion into the aqueous.  相似文献   

12.
We report for thefirst time that cultured nonpigmented human ciliary epithelial (NPE)cell layers transport fluid. Cells were grown to confluence onpermeable membrane inserts, and fluid transport across the resultingcell layers was determined by volume clamp at 37°C. These cell layerstranslocated fluid from the apical to the basal side at a steady rateof 3.6 µl · h1 · cm2(n = 4) for 8 h. This fluid movement wasindependent of hydrostatic pressure and was completely inhibited by 1 mM ouabain, suggesting it arose from fluid transport. Mercuricchloride, a nonspecific but potent blocker ofHg2+-sensitive aquaporins, and aquaporin-1 antisenseoligonucleotides both partially inhibited fluid transport across thecell layers, which suggests that water channels have a role in NPE cellhomeostasis. In addition, these results suggest that of the two ciliaryepithelial layers in tandem, the NPE layer by itself can transportfluid. This cultured layer, therefore, constitutes an interesting model that may be useful for physiological and pharmacologicalcharacterization of ciliary epithelial fluid secretion.

  相似文献   

13.
cGMP reduced the short-circuit current (I SC) when applied to the aqueous surface of isolated rabbit and cat ciliary epithelia. cGMP either stimulated (in the rabbit) or had no effect (in the cat) on I SC when applied to the stromal surface. Addition of the cGMP-mediated hormone atrial natriuretic peptide (ANP) to the stromal (but not the aqueous) surface, or the nitrovasodilator sodium nitroprusside to the stromal surface, inhibited I SC across rabbit ciliary epithelium.The response to stromal cGMP was partly mediated by K+ channels at the stromal surface of the rabbit pigmented epithelial (PE) cells, since the effect was inhibited by stromal Ba2+, and was unaffected by Cl replacement, by bumetanide, or by DIDS. In contrast, the response to aqueous cGMP was not likely mediated by changing either K+ or Cl channels, based on transepithelial measurements of rabbit ciliary epithelium and complementary whole-cell patch clamping of cultured human nonpigmented ciliary epithelial (NPE) cells. The possibility of interacting effects between cGMP and cAMP in targeting the Na+,K+-exchange pump was also considered. Strophanthidin blocked the responses to either aqueous or stromal cGAMP. Applying 10 m forskolin to generate endogenous cAMP enhanced the subsequent response to aqueous cGMP by 80%.We conclude that cGMP has at least two actions on the ciliary epithelium. The major effect may be to reverse cAMP-mediated inhibition of the NPE Na+ pumps at the aqueous surface of both rabbit and cat ciliary epithelia. The second effect is likely mediated by increasing K+-channel and pump activity of the rabbit PE cells at the stromal surface.Supported in part by research grants from the National Institutes of Health [EY10691 and EY00785 (for core facilities)] and from the American Health Assistance Foundation. We are grateful to Dr. Miguel Coca-Prados for graciously providing us with the ODM/SV40 NPE cells, and thank Prof. Rainer Greger (Albert-Ludwigs-Universitat, Freiburg, FRG) for kindly providing the NPPB.  相似文献   

14.
Summary Regional differences in the localization of Na+/K+-ATPase in the ciliary epithelium of albino rabbits were studied histochemically using the method of Chayen et al. and ultra-histochemically using a cerium-based method. In addition, the incubation time necessary to achieve first signs of staining was investigated as an indication of Na+/K+-ATPase activity. In the entire pars plicata: prelenticular, postlenticular, as well as tips and valleys, staining was seen in the lateral infoldings of the non pigmented epithelium (NPE) after short incubation periods. Somewhat later, the apical cell membranes also stained. The ultrastructure of these cells, together with the staining pattern, point towards a functional significance of the NPE in active fluid secretion. The pigmented epithelium (PE) did not stain. In the iridial processes and in the area of the ciliary ridges staining first appeared in the apical cell membranes of the NPE, which form the typical ciliary channels. The basolateral infoldings of the NPE also stained, whilst the PE remained unstained. The difference in morphology and staining between pars plicata and iridial processes could indicate a difference in function, e.g. reabsorption of freshly secreted aqueous humour. In the pars plana, only the basolateral infoldings of the PE stained. A functional significance of this area in connection with the blood retina barrier is discussed.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

15.
Adenosinestimulates Cl channels ofthe nonpigmented (NPE) cells of the ciliary epithelium. We sought toidentify the specific adenosine receptors mediating this action.Cl channel activity inimmortalized human (HCE) NPE cells was determined by monitoring cellvolume in isotonic suspensions with the cationic ionophore gramicidinpresent. The A3-selective agonistN6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide(IB-MECA) triggered shrinkage (apparentKd = 55 ± 10 nM). A3-selective antagonists blocked IB-MECA-triggered shrinkage, andA3-antagonists (MRS-1097, MRS-1191, and MRS-1523) also abolished shrinkage produced by 10 µMadenosine when all four known receptor subtypes are occupied. TheA1-selective agonistN6-cyclopentyladenosineexerted a small effect at 100 nM but not at higher or lowerconcentrations. The A2A agonistCGS-21680 triggered shrinkage only at high concentration (3 µM), aneffect blocked by MRS-1191. IB-MECA increased intracellularCa2+ in HCE cells and alsostimulated short-circuit current across rabbit ciliary epithelium.A3 message was detected in bothHCE cells and rabbit ciliary processes using RT-PCR. We conclude that human HCE cells and rabbit ciliary processes possessA3 receptors and that adenosinecan activate Cl channels inNPE cells by stimulating these A3 receptors.  相似文献   

16.
Purines regulate intraocular pressure. Adenosine activatesCl channels of nonpigmented ciliary epithelial cellsfacing the aqueous humor, enhancing secretion. Tamoxifen and ATPsynergistically activate Cl channels of pigmented ciliaryepithelial (PE) cells facing the stroma, potentially reducing netsecretion. The actions of nucleotides alone on Cl channelactivity of bovine PE cells were studied by electronic cell sorting,patch clamping, and luciferin/luciferase ATP assay. Clchannels were activated by ATP > UTP, ADP, and UDP, but not by 2-methylthio-ATP, all at 100 µM. UTP triggered ATP release. The second messengers Ca2+, prostaglandin (PG)E2,and cAMP activated Cl channels without enhancing effectsof 100 µM ATP. Buffering intracellular Ca2+activity with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'- tetraacetic acidor blocking PGE2 formation with indomethacininhibited ATP-triggered channel activation. The Rp stereoisomerof 8-bromoadenosine 3',5'-cyclic monophosphothioate inhibited proteinkinase A activity but mimicked 8-bromoadenosine 3',5'-cyclicmonophosphate. We conclude that nucleotides can act at >1 P2Yreceptor to trigger a sequential cascade involving Ca2+,PGE2, and cAMP. cAMP acts directly on Clchannels of PE cells, increasing stromal release and potentially reducing net aqueous humor formation and intraocular pressure.

  相似文献   

17.
18.
We have investigated the localization and pattern of expression of the three alpha subunit isoforms of Na,K-ATPase in the transporting ciliary epithelium of the bovine eye. Using specific cDNA probes and antisera to the alpha 1, alpha 2, and alpha 3 isoforms of Na,K-ATPase, we demonstrated that mRNAs and polypeptides for the three distinct forms of the Na,K-ATPase alpha subunit (alpha 1, alpha 2, and alpha 3) were expressed in the ciliary epithelium in vivo. Immunochemical localization of the three alpha isoforms of Na,K-ATPase in two ultrastructurally different regions of the ciliary epithelium (namely, the pars plicata and pars plana) revealed that the three alpha isoforms of Na,K-ATPase were distributed in a distinct fashion in the basolateral plasma membrane domains of nonpigmented (NPE) and pigmented (PE) cells. The NPE cells in the pars plicata showed an immunoreactive signal to all the three alpha isoforms; in the pars plana, they showed immunoreactive signals only for the alpha 1 and alpha 2 isoforms but not for alpha 3. The PE cells, in both the pars plana and pars plicata regions, showed an immunoreactive signal only for the alpha 1 isoform; immunoreactive signals were not detected for alpha 2 and alpha 3. To verify the differential immunostaining patterns of NPE and PE cells, specific antibodies for each of the three alpha subunit isoforms of Na,K-ATPase were applied to immunoblots containing microsomal fractions from flow cytometric-sorted cells (NPE and PE). Our results indicate that alpha 1, alpha 2, and alpha 3 polypeptides were present in microsomal fractions of NPE cells of the pars plicata and pars plana and that the alpha 1 polypeptide was the only polypeptide present in the PE cells from both regions of the ciliary epithelium. These results also revealed that the alpha 3 isoform epitope recognized by the monoclonal antibody McB-X3.1 in the pars plicata is not readily accessible in the pars plana. A cell line was established from the ciliary epithelium of a bovine eye by viral transformation with simian virus 40. In culture, this cell line expressed all three alpha isoforms at the mRNA and polypeptide levels, suggesting that the line may have derived from the NPE layer.  相似文献   

19.
Aqueous humorsecretion is in part linked to transport by nonpigmented ciliary epithelium (NPE) cells. During thisprocess, the cells must maintain stable cytoplasmic pH(pHi). Because a recent reportsuggests that NPE cells have a plasma membrane-localized vacuolarH+-ATPase, the present study wasconducted to examine whether vacuolar H+-ATPase contributes topHi regulation in a rabbit NPEcell line. Western blot confirmed vacuolarH+-ATPase expression as judged byH+-ATPase 31-kDa immunoreactivepolypeptide in both cultured NPE and native ciliary epithelium.pHi was measured using2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF).Exposing cultured NPE to K+-richsolution caused a pHi increase weinterpret as depolarization-induced alkalinization. Alkalinization wasalso caused by ouabain or BaCl2. Bafilomycin A1 (0.1 µM; aninhibitor of vacuolar H+-ATPase)inhibited the pHi increase causedby high K+. ThepHi increase was also inhibited byangiotensin II and the metabolic uncoupler carbonyl cyanidem-chlorophenylhydazone but not by ZnCl2,4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid(SITS), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), omeprazole, low-Clmedium, -free medium, orNa+-free medium. BafilomycinA1 slowed thepHi increase after an NH4Cl (10 mM) prepulse. However,no detectable pHi change was observed in cells exposed to bafilomycinA1 under control conditions. Thesestudies suggest that vacuolarH+-ATPase is activated bycytoplasmic acidification and by reduction of the protonelectrochemical gradient across the plasma membrane. We speculate thatthe mechanism might contribute to maintenance of acid-base balance inNPE.

  相似文献   

20.
Polyclonal antibodies against the canine kidney (Na+,K+)-ATPase were used to examine the localization and distribution of this protein in intact ciliary processes (CP) from bovine eyes by indirect immunofluorescence. The basolateral surface of non-pigmented (NPE) and pigmented (PE) ciliary epithelial cells was found to be stained specifically for the (Na+,K+)-ATPase. Immunoblot analysis of intact CP, separated PE and NPE cells by density gradients and cultured ciliary epithelial cells, revealed two forms of the catalytic subunit of the (Na+,K+)-ATPase: the alpha and alpha (+). The alpha (+) form was enriched in NPE cells while alpha was in PE cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号