首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.  相似文献   

2.
HIV-1 Gag protein interaction with cyclophilin A (CypA) is critical for viral fitness. Among the amino acid substitutions identified in Gag noncleavage sites in HIV-1 variants resistant to protease inhibitors, H219Q (Gatanaga, H., Suzuki, Y., Tsang, H., Yoshimura, K., Kavlick, M. F., Nagashima, K., Gorelick, R. J., Mardy, S., Tang, C., Summers, M. F., and Mitsuya, H. (2002) J. Biol. Chem. 277, 5952-5961) and H219P substitutions in the viral CypA binding loop confer the greatest replication advantage to HIV-1. These substitutions represent polymorphic amino acid residues. We found that the replication advantage conferred by these substitutions was far greater in CypA-rich MT-2 and H9 cells than in Jurkat cells and peripheral blood mononuclear cells (PBM), both of which contained less CypA. High intracellular CypA content in H9 and MT-2 cells, resulting in excessive CypA levels in virions, limited wild-type HIV-1 (HIV-1(WT)) replication and H219Q introduction into HIV-1 (HIV-1(H219Q)), reduced CypA incorporation of HIV-1, and potentiated viral replication. H219Q introduction also restored the otherwise compromised replication of HIV-1(P222A) in PBM, although the CypA content in HIV-1(H219Q/P222A) was comparable with that in HIV-1(P222A), suggesting that H219Q affected the conformation of the CypA-binding motif, rendering HIV-1 replicative in a low CypA environment. Structural modeling analyses revealed that although hydrogen bonds are lost with H219Q and H219P substitutions, no significant distortion of the CypA binding loop of Gag occurred. The loop conformation of HIV-1(P222A) was found highly distorted, although H219Q introduction to HIV-1 restored the conformation of the loop close to that of HIV-1 (P222A). The present data suggested that the effect of CypA on HIV-1 replicative (WT) ability is bimodal (both high and low CypA content limits HIV-1 replication), that the conformation of the CypA binding region of Gag is important for viral fitness, and that the function of CypA is to maintain the conformation.  相似文献   

3.
Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration.  相似文献   

4.
Braaten D  Luban J 《The EMBO journal》2001,20(6):1300-1309
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein binds most members of the cyclophilin family of peptidyl-prolyl isomerases. Of 15 known human cyclophilins, cyclophilin A (CypA) has been the focus of investigation because it was detected in HIV-1 virions. To determine whether CypA promotes HIV-1 replication, we deleted the gene encoding CypA (PPIA) in human CD4(+) T cells by homologous recombination. HIV-1 replication in PPIA(-/-) cells was decreased and not inhibited further by cyclosporin or gag mutations that disrupt Gag's interaction with cyclophilins, indicating that no other cyclophilin family members promote HIV-1 replication. The defective replication phenotype was specific for wild-type HIV-1 since HIV-2/SIV isolates, as well as HIV-1 bearing a gag mutation that confers cyclosporin resistance, replicated the same in PPIA(+/+) and PPIA(-/-) cells. Stable re-expression of CypA in PPIA(-/-) cells restored HIV-1 replication to an extent that correlated with steady-state levels of CypA. Finally, virions from PPIA(-/-) cells possessed no obvious biochemical abnormalities but were less infectious than virions from wild-type cells. These data formally demonstrate that CypA regulates the infectivity of HIV-1 virions.  相似文献   

5.
Cyclophilin A (CypA), a cytoplasmic, human immunodeficiency virus type 1 (HIV-1) CA-binding protein, acts after virion membrane fusion with human cells to increase HIV-1 infectivity. HIV-1 CA is similarly greeted by CypA soon after entry into rhesus macaque or African green monkey cells, where, paradoxically, the interaction decreases HIV-1 infectivity by facilitating TRIM5alpha-mediated restriction. These observations conjure a model in which CA recognition by the human TRIM5alpha orthologue is precluded by CypA. Consistent with the model, selection of a human cell line for decreased restriction of the TRIM5alpha-sensitive, N-tropic murine leukemia virus (N-MLV) rendered HIV-1 transduction of these cells independent of CypA. Additionally, HIV-1 virus-like particles (VLPs) saturate N-MLV restriction activity, particularly when the CA-CypA interaction is disrupted. Here the effects of CypA and TRIM5alpha on HIV-1 restriction were examined directly. RNA interference was used to show that endogenous human TRIM5alpha does indeed restrict HIV-1, but the magnitude of this antiviral activity was not altered by disruption of the CA-CypA interaction or by elimination of CypA protein. Conversely, the stimulatory effect of CypA on HIV-1 infectivity was completely independent of human TRIM5alpha. Together with previous reports, these data suggest that CypA protects HIV-1 from an unknown antiviral activity in human cells. Additionally, target cell permissivity increased after loading with heterologous VLPs, consistent with a common saturable target that is epistatic to both TRIM5alpha and the putative CypA-regulated restriction factor.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.  相似文献   

7.
The present study proposes a novel mode of action for cyclophilin A (CypA) in the HIV-1 life cycle. We demonstrate that CypA-deficient viruses do not replicate because they fail to attach to target cells. We show that CypA is exposed at the viral membrane and mediates HIV-1 attachment. We identify heparan as the exclusive cellular binding partner for CypA. Furthermore, CypA binds directly to heparan via a domain rich in basic residues similar to known heparin-binding motifs. This interaction between exposed CypA and cell surface heparans represents the initial step of HIV-1 attachment and is a necessary precursor to gp120-binding to CD4. In conclusion, HIV-1 attachment to target cells is a multi-step process that requires an initial CypA-heparan interaction followed by the gp120-CD4 interaction.  相似文献   

8.
In this study, we asked if a naturally occurring HIV-1 variant exists that circumvents CypA dependence in human cells. To address this issue, we sought viruses for CypA independence using Debio-025, a cyclosporine A (CsA) analog that disrupts CypA-capsid interaction. Surprisingly, viral variants from the Main group replicate even in the presence of the drug. Sequencing analyses revealed that these viruses encode capsid substitutions within the CypA-binding site (V86P/H87Q/I91V/M96I). When we introduced these substitutions into viruses that normally rely on CypA for replication, these mutants no longer depended on CypA, suggesting that naturally occurring capsid substitutions obviate the need for CypA. This is the first demonstration that isolates from the Main group naturally develop CypA-independent strategies to replicate in human cells. Surprisingly, we found that these capsid substitutions render HIV-1 capable of infecting Owl monkey (OMK) cells that highly restrict HIV-1. OMK cell resistance to HIV-1 is mediated via TRIM-Cyp, which arose from a retrotransposition of CypA into the TRIM5 alpha gene. Interestingly, saturation experiments suggest that the Pro86/Gln87/Val91/Ile96 capsid core is "invisible" to TRIM-Cyp. This study demonstrates that specific capsid substitutions can release HIV-1 from both CypA dependence in human cells and TRIM-Cyp restriction in monkey cells.  相似文献   

9.
HIV-1 assembly and disassembly (uncoating) processes are critical for the HIV-1 replication. HIV-1 capsid (CA) and human cyclophilin A (CypA) play essential roles in these processes. We designed and synthesized a series of thiourea compounds as HIV-1 assembly and disassembly dual inhibitors targeting both HIV-1 CA protein and human CypA. The SIV-induced syncytium antiviral evaluation indicated that all of the inhibitors displayed antiviral activities in SIV-infected CEM cells at the concentration of 0.6–15.8 μM for 50% of maximum effective rate. Their abilities to bind CA and CypA were determined by ultraviolet spectroscopic analysis, fluorescence binding affinity and PPIase inhibition assay. Assembly studies in vitro demonstrated that the compounds could potently disrupt CA assembly with a dose-dependent manner. All of these molecules could bind CypA with binding affinities (Kd values) of 51.0–512.8 μM. Fifteen of the CypA binding compounds showed potent PPIase inhibitory activities (IC50 values < 1 μM) while they could not bind either to HIV-1 Protease or to HIV-1 Integrase in the enzyme assays. These results suggested that 15 compounds could block HIV-1 replication by inhibiting the PPIase activity of CypA to interfere with capsid disassembly and disrupting CA assembly.  相似文献   

10.

Background

Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear.

Results

Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA.

Conclusions

For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.  相似文献   

11.
Cyclophilin A (CypA) is a peptidyl-prolyl isomerase that binds to the capsid protein (CA) of human immunodeficiency virus type 1 (HIV-1) and by doing so facilitates HIV-1 replication. Although CypA is incorporated into HIV-1 virions by virtue of CypA-Gag interactions that occur during virion assembly, in this study we show that the CypA-CA interaction that occurs following the entry of the viral capsid into target cells is the major determinant of CypA's effects on HIV-1 replication. Specifically, by using normal and CypA-deficient Jurkat cells, we demonstrate that the presence of CypA in the target and not the virus-producing cell enhances HIV-1 infectivity. Moreover, disruption of the CypA-CA interaction with cyclosporine A (CsA) inhibits HIV-1 infectivity only if the target cell expresses CypA. The effect of CsA on HIV-1 infection of human cells varies according to which particular cell line is used as a target, and CA mutations that confer CsA resistance and dependence exert their effects only if target cells, and not if virus-producing cells, are treated with CsA. The differential effects of CsA on HIV-1 infection in different human cells appear not to be caused by polymorphisms in the recently described retrovirus restriction factor TRIM5alpha. We speculate that CypA and/or CypA-related proteins affect the fate of incoming HIV-1 capsid either directly or by modulating interactions with unidentified host cell factors.  相似文献   

12.
The narrow host range of human immunodeficiency virus type 1 (HIV-1) is due in part to dominant acting restriction factors in humans (Ref1) and monkeys (Lv1). Here we show that gag encodes determinants of species-specific lentiviral infection, related in part to such restriction factors. Interaction between capsid and host cyclophilin A (CypA) protects HIV-1 from restriction in human cells but is essential for maximal restriction in simian cells. We show that sequence variation between HIV-1 isolates leads to variation in sensitivity to restriction factors in human and simian cells. We present further evidence for the importance of target cell CypA over CypA packaged in virions, specifically in the context of gp160 pseudotyped HIV-1 vectors. We also show that sensitivity to restriction is controlled by an H87Q mutation in the capsid, implicated in the immune control of HIV-1, possibly linking immune and innate control of HIV-1 infection.  相似文献   

13.
Studies conducted in cell lines indicate that cyclophilin A (CypA) is a component of HIV type 1 (HIV-1) virions, and that when CypA incorporation into virions is inhibited by treatment of infected cells with the immunosuppressive agent cyclosporin A (CsA), HIV-1 infection also is inhibited. Because HIV-1 particles assemble along a different pathway and incorporate different host proteins in macrophages than in other cell types, we investigated CypA and CsA activities in HIV-1-infected primary human macrophages, compared with primary human lymphocytes. We tested virus protein production, virion composition and infectivity, and progress through the virus life cycle under perturbation by drug treatment or mutagenesis in infected cells from multiple donors. Our findings from both primary cell types are different from that previously reported in transformed cells and show that the amount of CypA incorporated into virions is variable and that CsA inhibits HIV-1 infection at both early and late phases of virus replication, the stage affected is determined by the sequence of HIV-1 Gag. Because the cell type infected determines the identity of host proteins active in HIV-1 replication and can influence the activity of some viral inhibitors, infection of transformed cells may not recapitulate infection of the native targets of HIV-1.  相似文献   

14.
Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors   总被引:14,自引:0,他引:14  
Many mammalian species express restriction factors that confer host resistance to retroviral infection. Here we show that HIV-1 sensitivity to restriction factors is modulated by cyclophilin A (CypA), a host cell protein that binds the HIV-1 capsid protein (CA). In certain nonhuman primate cells, the CA-CypA interaction is essential for restriction: HIV-1 infectivity is increased >100-fold by cyclosporin A (CsA), a competitive inhibitor of the interaction, or by an HIV-1 CA mutation that disrupts CypA binding. Conversely, disruption of CA-CypA interaction in human cells reveals that CypA protects HIV-1 from the Ref-1 restriction factor. These findings suggest that HIV-1 has co-opted a host cell protein to counteract restriction factors expressed by human cells and that this adaptation can confer sensitivity to restriction in unnatural hosts. Manipulation of HIV-1 CA recognition by restriction factors promises to advance animal models and new therapeutic strategies for HIV-1 and AIDS.  相似文献   

15.
存在于宿主细胞质中的亲环素A(Cyclophilin A,CypA)对HIV-1的感染性具有重要影响。在病毒颗粒的脱壳过程中,CypA与衣壳蛋白的相互作用可破坏病毒衣壳的稳定性,加快病毒颗粒的解装配,并将病毒RNA释放出来进行逆转录,从而促进HIV-1的增殖。阻断CypA与衣壳蛋白的相互作用可以降低HIV-1的感染性,因此CypA极有可能成为抗HIV-1药物开发的新靶点。本综述主要介绍CypA的结构及功能,并对一些具有抗HIV-1活性的CypA抑制剂做一简要介绍。  相似文献   

16.
Agarwal PK 《Proteins》2004,56(3):449-463
A network of protein vibrations has recently been identified in the enzyme cyclophilin A (CypA) that is associated with its peptidyl-prolyl cis/trans isomerization activity of small peptide substrates. It has been suggested that this network may have a role in promoting the catalytic step during the isomerization reaction. This work presents the results from the characterization of this network during the isomerization of the Gly89-Pro90 peptide bond in the N-terminal domain of the capsid protein (CA(N)) from human immunodeficiency virus type 1 (HIV-1), which is a naturally occurring, biologically relevant protein substrate for CypA. A variety of computational and theoretical studies are utilized to investigate the protein dynamics of the CypA-CA(N) complex, at multiple time scales, during the isomerization step. The results provide insights into the detailed mechanism of isomerization and confirm the presence of previously reported network of protein vibrations coupled to the reaction. Conserved CypA residues at the complex interface and at positions distal to the interface form parts of this network. There is HIV-1 related medical interest in CypA; incorporation of CypA, complexed with the capsid protein, into the virion is required for the infectious activity of HIV-1. Interaction energy and dynamical cross-correlation calculations are used for a detailed investigation of the protein-protein interactions in the CypA-CA(N) complex. The results show that CA(N) residues His87-Ala-Gly-Pro-Ile-Ala92 form the majority of the interactions with CypA residues. New protein-protein interactions distal to the active site (CypA Arg148-CA(N) Gln95 and CypA Arg148-CA(N) Asn121) are also identified.  相似文献   

17.
The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.  相似文献   

18.
19.

Background

Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined.

Results

Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding.

Conclusions

Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data. In detail the SPR data of this interaction were compatible with a two-state binding interaction model that involves a conformational change during binding. This is in accord with the structural changes observed by NMR suggesting CypA catalyzes the prolyl cis/trans interconversion during binding to the RHFP35RIW motif of N-terminal Vpr.  相似文献   

20.
Yang R  Aiken C 《Journal of virology》2007,81(8):3749-3756
The replication of many isolates of human immunodeficiency virus type 1 (HIV-1) is enhanced by binding of the host cell protein cyclophilin A (CypA) to the viral capsid protein (CA). The immunosuppressive drug cyclosporine A (CsA) and its nonimmunosuppressive analogs bind with high affinity to CypA and inhibit HIV-1 replication. Previous studies have identified two mutations, A92E and G94D, in the CypA-binding loop of CA that confer the ability of HIV-1 to replicate in the presence of CsA. Interestingly, CsA stimulates the replication of HIV-1 mutants containing either the A92E or G94D substitution in some human cell lines. Here, we show that substitution of alanine for threonine at position 54 of CA (T54A) also confers HIV-1 resistance to and dependence on CsA. Like the previously identified CsA-resistant/dependent mutants, infection by the T54A mutant was stimulated by CsA in a target cell-specific manner. RNA interference-mediated reduction of CypA expression enhanced the permissiveness of HeLa cells to infection by the T54A mutant. A suppressor mutation, encoding a substitution of threonine for alanine at position 105 of CA (A105T), was identified through adaptation of the T54A mutant virus for growth in CEM cells. A105T rescued the impaired single-cycle infectivity and replication defects of both T54A and A92E mutants. These results indicate that CA determinants outside the CypA-binding loop can modulate the dependence of HIV-1 infection on CypA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号