首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place.  相似文献   

2.
Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the dynein pathway, astral microtubules off-load dynein onto the cortical anchor protein Num1, which is followed by dynein pulling on the spindle. Yet, the mechanism by which microtubules target cortical anchor sites is unknown. Here we quantify the pivoting motion of astral microtubules around the spindle pole bodies, which occurs during spindle translocation towards the neck and through the neck. We show that this pivoting is largely driven by the Kar9 pathway. The microtubules emanating from the daughter-bound spindle pole body pivot faster than those at the mother-bound spindle pole body. The Kar9 pathway reduces the time needed for an astral microtubule inside the daughter cell to start pulling on the spindle. Thus, we propose a new role for microtubule pivoting: By pivoting around the spindle pole body, microtubules explore the space laterally, which helps them search for cortical anchor sites in the context of spindle positioning in budding yeast.  相似文献   

3.
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to defects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.  相似文献   

4.
Asymmetric cell divisions are crucial to the generation of cell fate diversity. They contribute to unequal distribution of cellular factors to the daughter cells. Asymmetric divisions are characterized by a 90 degrees rotation of the mitotic spindle. There is increasing evidence that a tight cooperation between cortical, filamentous actin and astral microtubules is indispensable for successful spindle rotation. Over the past years, the dynactin complex has emerged as a key candidate to mediate actin/microtubule interaction at the cortex. This review discusses our current understanding of how spindle rotation is accomplished by the interplay of filamentous actin and microtubules in a variety of experimental systems.  相似文献   

5.
In Saccharomyces cerevisiae, Kar9p, one player in spindle alignment, guides the bud-ward spindle pole by linking astral microtubule plus ends to Myo2p-based transport along actin cables generated by the formins Bni1p and Bnr1p and the polarity determinant Bud6p. Initially, Kar9p labels both poles but progressively singles out the bud-ward pole. Here, we show that this polarization requires cell polarity determinants, actin cables, and microtubules. Indeed, in a bud6Δ bni1Δ mutant or upon direct depolymerization of actin cables Kar9p symmetry increased. Furthermore, symmetry was selectively induced by myo2 alleles, preventing Kar9p binding to the Myo2p cargo domain. Kar9p polarity was rebuilt after transient disruption of microtubules, dependent on cell polarity and actin cables. Symmetry breaking also occurred after transient depolymerization of actin cables, with Kar9p increasing at the spindle pole engaging in repeated cycles of Kar9p-mediated transport. Kar9p returning to the spindle pole on shrinking astral microtubules may contribute toward this bias. Thus, Myo2p transport along actin cables may support a feedback loop by which delivery of astral microtubule plus ends sustains Kar9p polarized recruitment to the bud-ward spindle pole. Our findings also explain the link between Kar9p polarity and the choice setting aside the old spindle pole for daughter-bound fate.  相似文献   

6.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

7.
In eukaryotic cells, proper position of the mitotic spindle is necessary for successful cell division and development. We explored the nature of forces governing the positioning and elongation of the mitotic spindle in Schizosaccharomyces pombe. We hypothesized that astral microtubules exert mechanical force on the S. pombe spindle and thus help align the spindle with the major axis of the cell. Microtubules were tagged with green fluorescent protein (GFP) and visualized by two-photon microscopy. Forces were inferred both from time-lapse imaging of mitotic cells and, more directly, from mechanical perturbations induced by laser dissection of the spindle and astral microtubules. We found that astral microtubules push on the spindle poles in S. pombe, in contrast to the pulling forces observed in a number of other cell types. Further, laser dissection of the spindle midzone induced spindle collapse inward. This offers direct evidence in support of the hypothesis that spindle elongation is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Broken spindles recovered and mitosis completed as usual. We propose a model of spindle centering and elongation by microtubule-based pushing forces.  相似文献   

8.
The first cleavage in the freshwater oligochaete Tubifex hattai is unequal and meridional, and produces a smaller cell AB and a larger cell CD. This study traces the process of furrow formation, reorganization of cortical F-actin and the assembly of a mitotic apparatus during this unequal division. Cleavage furrow formation consists of two stages: (i) when eggs are viewed from the animal pole, meridionally running furrows emerge at two points of the egg's equator that are 90° apart from each other and approach the egg axis as they deepen; and (ii) at the midpoint between the equator and the egg center, the bottoms of these furrows link to each other on the animal and vegetal surfaces of the egg and form a continuous ring of constriction in a plane parallel to the egg axis. Egg cortices, isolated during the first step and stained with rhodamine-phalloidin, show that the bottoms of recently formed furrows are underlaid by a belt of tightly packed actin bundles (i.e. a contractile arc). The transition to the second stage of furrow formation coincides with the conversion of these actin belts into a continuous ring of F-actin. Whole-mount immunocytochemistry of microtubules reveals that the first cleavage in Tubifex involves an asymmetric mitotic spindle, which initially possesses an aster at one pole but not the other. This ‘monastral’ spindle is located at the egg's center and orients itself perpendicular to the egg axis. During anaphase, astral rays elongate to reach the cell surface, so that the array of astral microtubules in the plane of the egg's equator covers a sector of 270–300°. In contrast, it is not until the transition to telophase that microtubules emanating from the anastral spindle pole approach the cell margin. If eggs are compressed along the egg axis or forced to elongate, they form monastral spindles and divide unequally. In living compressed eggs, mitotic spindles, which are recognizable as bright streaks at the egg's center, appear not to shift their position along the spindle axis during division, suggesting that without eccentric migration of spindles Tubifex eggs are able to divide unequally. These results suggest that mechanisms that translocate the mitotic spindle eccentrically do not operate in Tubifex eggs during the first cell cycle. The mechanisms that generate asymmetry in spindle organization are discussed in the light of the present results.  相似文献   

9.
The cell division apparatus is assembled at different stages of the cell cycle in different eukaryotic organisms. Mechanisms exist in all organisms, however, to ensure that the cell division apparatus and the mitotic spindle are aligned perpendicular to each other. Such an alignment ensures that each daughter cell receives a nucleus and that the cell division apparatus does not cleave and destroy the genetic material. The interaction(s) of astral microtubules with the cell cortex appears to play an important role in establishing perpendicularity between chromosome segregation and cell division machinery.  相似文献   

10.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

11.
The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.  相似文献   

12.
Accurate mitotic spindle positioning is essential for the regulation of cell fate choices, cell size and cell position within tissues. The most prominent model of spindle positioning involves a cortical pulling mechanism, where the minus end-directed microtubule motor protein dynein is attached to the cell cortex and exerts pulling forces on the plus ends of astral microtubules that reach the cortex. In nonpolarized cultured cells integrin-dependent, retraction fiber-mediated cell adhesion is involved in spindle orientation. Proteins serving as intermediaries between cortical actin or retraction fibers and astral microtubules remain largely unknown. In a recent genome-wide RNAi screen we identified a previously uncharacterized protein, MISP (C19ORF21) as being involved in centrosome clustering, a process leading to the clustering of supernumerary centrosomes in cancer cells into a bipolar mitotic spindle array by microtubule tension. Here, we show that MISP is associated with the actin cytoskeleton and focal adhesions and is expressed only in adherent cell types. During mitosis MISP is phosphorylated by Cdk1 and localizes to retraction fibers. MISP interacts with the +TIP EB1 and p150glued, a subunit of the dynein/dynactin complex. Depletion of MISP causes mitotic arrest with reduced tension across sister kinetochores, chromosome misalignment and spindle multipolarity in cancer cells with supernumerary centrosomes. Analysis of spindle orientation revealed that MISP depletion causes randomization of mitotic spindle positioning relative to cell axes and cell center. Together, we propose that MISP links microtubules to the actin cytoskeleton and focal adhesions in order to properly position the mitotic spindle.  相似文献   

13.
Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin-based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length.  相似文献   

14.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

15.
Precise positioning of the mitotic spindle determines the correct cell division axis and is crucial for organism development. Spindle positioning is mediated through a cortical machinery by capturing astral microtubules, thereby generating pushing/pulling forces at the cell cortex. However, the molecular link between these two structures remains elusive. Here we describe a previously uncharacterized protein, MISP (C19orf21), as a substrate of Plk1 that is required for correct mitotic spindle positioning. MISP is an actin-associated protein throughout the cell cycle. MISP depletion led to an impaired metaphase-to-anaphase transition, which depended on phosphorylation by Plk1. Loss of MISP induced mitotic defects including spindle misorientation accompanied by shortened astral microtubules. Furthermore, we find that MISP formed a complex with and regulated the cortical distribution of the +TIP binding protein p150glued, a subunit of the dynein–dynactin complex. We propose that Plk1 phosphorylates MISP, thus stabilizing cortical and astral microtubule attachments required for proper mitotic spindle positioning.  相似文献   

16.
In the February 21 issue of Cell, demonstrate that asymmetrical loading of Kar9 onto astral microtubules (MTs) emanating from the bud-ward-directed spindle pole ensures delivery of this spindle pole to the bud. Kar9 mediates alignment of the spindle with the cell polarity axis through a Myo2-dependent mechanism that reorients astral MTs toward the bud.  相似文献   

17.
In animal cells, positioning of the mitotic spindle is crucial for defining the plane of cytokinesis and the size ratio of daughter cells. We have characterized this phenomenon in a rat epithelial cell line using microscopy, micromanipulation, and microinjection. Unmanipulated cells position the mitotic spindle near their geometric center, with the spindle axis lying roughly parallel to the long axis of the cell. Spindles that were initially misoriented underwent directed rotation and caused a delay in anaphase onset. To gain further insight into this process, we gently deformed cells with a blunted glass needle to change the spatial relationship between the cortex and spindle. This manipulation induced spindle movement or rotation in metaphase and/or anaphase, until the spindle reached a proper position relative to the deformed shape. Spindle positioning was inhibited by either treatment with low doses of nocodazole or microinjection of antibodies against dynein, apparently due to the disruption of the organization of dynein and/or astral microtubules. Our results suggest that mitotic cells continuously monitor and maintain the position of the spindle relative to the cortex. This process is likely driven by interactions among astral microtubules, the motor protein dynein, and the cell cortex and may constitute part of a mitotic checkpoint mechanism.  相似文献   

18.
Accurate positioning of the mitotic spindle is critical to ensure proper distribution of chromosomes during cell division. The small GTPase Ran, which regulates a variety of processes throughout the cell cycle, including interphase nucleocytoplasmic transport and mitotic spindle assembly, was recently shown to also control spindle alignment. Ran is required for the correct cortical localization of LGN and nuclear-mitotic apparatus protein (NuMA), proteins that generate pulling forces on astral microtubules (MTs) through cytoplasmic dynein. Here we use importazole, a small-molecule inhibitor of RanGTP/importin-β function, to study the role of Ran in spindle positioning in human cells. We find that importazole treatment results in defects in astral MT dynamics, as well as in mislocalization of LGN and NuMA, leading to misoriented spindles. Of interest, importazole-induced spindle-centering defects can be rescued by nocodazole treatment, which depolymerizes astral MTs, or by overexpression of CLASP1, which does not restore proper LGN and NuMA localization but stabilizes astral MT interactions with the cortex. Together our data suggest a model for mitotic spindle positioning in which RanGTP and CLASP1 cooperate to align the spindle along the long axis of the dividing cell.  相似文献   

19.
Pav-KLP is the Drosophila member of the MKLP1 family essential for cytokinesis. In the syncytial blastoderm embryo, GFP-Pav-KLP cyclically associates with astral, spindle, and midzone microtubules and also to actomyosin pseudocleavage furrows. As the embryo cellularizes, GFP-Pav-KLP also localizes to the leading edge of the furrows that form cells. In mononucleate cells, nuclear localization of GFP-Pav-KLP is mediated through NLS elements in its C-terminal domain. Mutants in these elements that delocalize Pav-KLP to the cytoplasm in interphase do not affect cell division. In mitotic cells, one population of wild-type GFP-Pav-KLP associates with the spindle and concentrates in the midzone at anaphase B. A second is at the cell cortex on mitotic entry and later concentrates in the region of the cleavage furrow. An ATP binding mutant does not localize to the cortex and spindle midzone but accumulates on spindle pole microtubules to which actin is recruited. This leads either to failure of the cleavage furrow to form or later defects in which daughter cells remain connected by a microtubule bridge. Together, this suggests Pav-KLP transports elements of the actomyosin cytoskeleton to plus ends of astral microtubules in the equatorial region of the cell to permit cleavage ring formation.  相似文献   

20.
In the fission yeast Schizosaccharomyces pombe, interphase microtubules (MTs) position the nucleus [1, 2], which in turn positions the cell-division plane [1, 3]. It is unclear how the spindle orients, with respect to the predetermined division plane, to ensure that the chromosomes are segregated across this plane. It has been proposed that, during prometaphase, the astral MT interaction with the cell cortex aligns the spindle with the cell axis [4] and also participates in a spindle orientation checkpoint (SOC), which delays entry into anaphase as long as the spindle is misaligned [5-7]. Here, we trace the position of the spindle throughout mitosis in a single-cell assay. We find no evidence for the SOC. We show that the spindle is remarkably well aligned with the cell longitudinal axis at the onset of mitosis, by growing along the axis of the adjacent interphase MT. Misalignment of nascent spindles can give rise to anucleate cells when spindle elongation is impaired. We propose a new role for interphase microtubules: through interaction with the spindle pole body, interphase microtubules determine the initial alignment of the spindle in the subsequent cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号