首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In vitro degranulation of rat mast cells was studied at different intervals ranging from 10 to 60 sec after adding the histamine liberator, compound 48/80 (0.4 µg/ml, 17°C). The ultrastructural changes were followed by electron microscopy, and parallel assays were made to determine the histamine released. In addition, the extracellular tracers lanthanum and hemoglobin (demonstrated by its peroxidative activity) were applied to mast cells to follow communication of the extracellular space with the cavities formed during degranulation. After a lag period of 10 sec, degranulation started in the most peripherally located granules. The perigranular membrane fused with the plasma membrane, resulting in a pore bridged by a thin diaphragm. This was followed by rupture of the diaphragm and extrusion of the granule matrix (exocytosis). The process advanced towards the cell interior by fusion and opening of the deeper situated granules to the formerly opened granule cavities. At the end of the process, the cell was filled by a system of complicated cavities containing a number of altered granules. Extracellular tracers have shown that these intracellular cavities were in unbroken communication with the extracellular space from the very beginning of their formation. Both lanthanum and hemoglobin were found to be adsorbed to the limiting membrane of the cavities and bound to altered mast cell granules. In contrast, no tracer substance was present in nondegranulating mast cells. Degranulation of mast cells by compound 48/80 is regarded as a sequential exocytosis, a process similar to that described for some exocrine gland cells. All the "intracellular" cavities, formed by degranulation, were shown to communicate with the extracellular space; consequently, granules lying in these cavities must be considered as biologically extracellular. The present findings support the view that histamine is released from the granule matrix by the extracellular ionic milieu.  相似文献   

2.
The mandibular gland of the Djungarian hamster was examined by light microscopy, and transmission and scanning electron microscopies. Its acinar cells reacted with periodic acid-Schiff (PAS) and were weakly stained with alcian blue (AB). There were intercellular canaliculi between the acinar cells. These cells therefore appeared to be seromucous. The acinar epithelium was composed of light cells containing various spherical secretory granules. The granular cells of the mandibular gland possessed many acidophilic granules exhibiting a positive reaction to PAS stain. They were frequently observed at the junction of the acini and intercalated ducts in all mandibular glands examined. All of these cells were light and contained secretory granules of varying size and density. The intercalated ducts consisted exclusively of light cells possessing a few round granules of high density in the apical region. The striated ducts were comprised of two portions--a secretory portion and a typical striated portion without secretory granules. The secretory portion consisted of light, dark and specifically light epithelial cells containing acidophilic granules, which exhibited a strongly positive PAS reaction. The epithelium of typically striated portions was composed of light and dark cells containing fine vacuoles in the apical region. The mandibular gland of the Djungarian hamster revealed no histological differences between sexes.  相似文献   

3.
Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule’s volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed ‘unit granules’, forming granules whose volumes are multiples of the unit granule’s volume. Mutations which perturb this process can cause significant pathology. For example, Chediak–Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak–Higashi syndrome and in ‘beige’ (Lystbg/Lystbg) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule–granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules permit the cells to store large amounts of material without requiring the amount of membrane necessary to package the same amount of cargo into small granules. In addition, the formation of mature secretory granules that are multimers of unit granules provides a mechanism for mixing in large granules the contents of unit granules which differ in their content of cargo.  相似文献   

4.
It is often assumed that upon fusion of the secretory granule membrane with the plasma membrane, lumenal contents are rapidly discharged and dispersed into the extracellular medium. Although this is the case for low-molecular-weight neurotransmitters and some proteins, there are numerous examples of the dispersal of a protein being delayed for many seconds after fusion. We have investigated the role of fusion-pore expansion in determining the contrasting discharge rates of fluorescent-tagged neuropeptide-Y (NPY) (within 200 ms) and tissue plasminogen activator (tPA) (over many seconds) in adrenal chromaffin cells. The endogenous proteins are expressed in separate chromaffin cell subpopulations. Fusion pore expansion was measured by two independent methods, orientation of a fluorescent probe within the plasma membrane using polarized total internal reflection fluorescence microscopy and amperometry of released catecholamine. Together, they probe the continuum of the fusion-pore duration, from milliseconds to many seconds after fusion. Polarized total internal reflection fluorescence microscopy revealed that 71% of the fusion events of tPA-cer-containing granules maintained curvature for >10 s, with approximately half of the structures likely connected to the plasma membrane by a short narrow neck. Such events were not commonly observed upon fusion of NPY-cer-containing granules. Amperometry revealed that the expression of tPA-green fluorescent protein (GFP) prolonged the duration of the prespike foot ∼2.5-fold compared to NPY-GFP-expressing cells and nontransfected cells, indicating that expansion of the initial fusion pore in tPA granules was delayed. The t1/2 of the main catecholamine spike was also increased, consistent with a prolonged delay of fusion-pore expansion. tPA added extracellularly bound to the lumenal surface of fused granules. We propose that tPA within the granule lumen controls its own discharge. Its intrinsic biochemistry determines not only its extracellular action but also the characteristics of its presentation to the extracellular milieu.  相似文献   

5.
The sequence of ultrastructural events following the onset of the sperm-induced conductance increase in eggs of the sea urchin, Lytechinus variegatus, was investigated. Eggs voltage clamped at -20 mV were fixed 1 to 20 sec after onset of the conductance increase caused by single sperm. Continuity between the plasma membranes of the sperm and egg was first detected 5 sec after onset of the conductance increase. The earliest stages of formation of the fertilization cone coincided with the establishment of continuity of the gamete plasma membranes. At 6 to 8 sec after the initial conductance increase cortical granule dehiscence was first observed in the immediate vicinity where continuity of the gamete plasma membranes had occurred. These observations are consistent with the conclusion that opening of ion channels at fertilization precedes fusion of the sperm and egg plasma membranes, while exocytosis of cortical granules is initiated following fusion of the sperm and egg plasma membranes.  相似文献   

6.
Timing the early events during sea urchin fertilization   总被引:1,自引:0,他引:1  
To determine precisely the timing, duration, and sequences of the earliest events during sea urchin (Lytechinus variegatus) fertilization, the bioelectric recordings of microelectrode-impaled eggs were electronically superimposed, by video mixing, over the microscopic differential interference contrast image of the same egg at insemination. Videotape analysis, utilizing a slow-motion analyzer, demonstrates that the successful sperm triggers the bioelectric membrane potential reversal within 3.36 +/- 3.02 sec (0.72-9.76 sec range; sigma = 23 eggs) of sperm-egg attachment. This sperm, actively gyrating about its attachment site, is indistinguishable from the other, unsuccessful sperm until 12.66 +/- 2.72 sec (6.72-16.60 sec range; sigma = 15) later when the sperm tail ceases its beating and sperm incorporation ensues. The cortical granules begin to discharge, and the fertilization coat starts to elevate at the fusion site at 20.79 +/- 3.18 sec (13.62-26.08 sec range; sigma = 12) after the onset of the fertilization potential, i.e., an average of about 8 sec after the cessation of sperm-tail motility during incorporation. In most cases, the bioelectric responses starts within 7 sec of sperm adhesions; if the data are analyzed excluding the few slow cases, the fertilization potential is found to start 1.93 sec (+/- 1.28 sec) after sperm attachment. These results indicate that the first successful sperm triggers the fast block to polyspermy within 3.4 sec, perhaps as quickly as 1.9 sec, of sperm-egg adhesion, about 13 sec before the first morphological indication of fertilization, and about 21 sec before the characteristic elevation of the fertilization coat responsible for the late block to polyspermy.  相似文献   

7.
Transformation of the spermatozoon of Ascaris suum from a spheroidal to an ameboid cell is associated with the formation of a motile pseudopodium and coalescence of the intracellular refringent granules. The pseudopodia of the ameboid spermatozoa contain filaments organized into dense patches, bundles, web-like or lace-like networks, as observed by electron microscopy. The morphology and chemistry of the refringent granules were investigated in subcellular fractions enriched for these structures. Isolated refringent granules were heterogeneous in size measuring from 0.5 X 0.6 to 2.3 X 3.5 microns. Each granule is surrounded by a 110 A thick layer. During fusion, the surfaces of the refringent granules form small extensions resembling micropodia. The process of fusion occurs at many sites on a given granule and simultaneous fusion of several granules was commonly observed. Amino acid analyses of the refringent granule proteins (RGP's) indicated: they are rich in aspartic acid or asparagine (48%), leucine (10%), serine (19%) and aromatic amino acids (11%). Gas-liquid chromatographic analyses of alditol acetate derivatives of monosaccharides released by mild acid hydrolysis showed the predominant sugars to be glucose (7.3 micrograms/mg protein), galactose (9.2 micrograms/mg) and N-acetylglucosamine (5.5 micrograms/mg). Lipid analyses indicated a complex mixture of glycerides, ascarosides and waxes, together with a major component that resembled free fatty acid in mobility on TLC.  相似文献   

8.
Secretory granules labeled with Vamp-green fluorescent protein (GFP) showed distinct signatures upon exocytosis when viewed by total internal reflection fluorescence microscopy. In approximately 90% of fusion events, we observed a large increase in fluorescence intensity coupled with a transition from a small punctate appearance to a larger, spreading cloud with free diffusion of the Vamp-GFP into the plasma membrane. Quantitation suggests that these events reflect the progression of an initially fused and spherical granule flattening into the plane of the plasma membrane as the Vamp-GFP simultaneously diffuses through the fusion junction. Approximately 10% of the events showed a transition from puncta to ring-like structures coupled with little or no spreading. The ring-like images correspond quantitatively to granules fusing and retaining concavity (recess of approximately 200 nm). A majority of fusion events involved granules that were present in the evanescent field for at least 12 s. However, approximately 20% of the events involved granules that were present in the evanescent field for no more than 0.3 s, indicating that the interaction of the granule with the plasma membrane that leads to exocytosis can occur within that time. In addition, approximately 10% of the exocytotic sites were much more likely to occur within a granule diameter of a previous event than can be accounted for by chance, suggestive of sequential (piggy-back) exocytosis that has been observed in other cells. Overall granule behavior before and during fusion is strikingly similar to exocytosis previously described in the constitutive secretory pathway.  相似文献   

9.

Introduction

Suicide is a complex and multifactorial phenomenon with growing importance to public health. An increase in its occurrence has been observed in Mexico over the past 10 years. The present article analyzes the secular trend in suicide at the national level between the years 2000 and 2013.

Materials and Methods

All suicides during the study period (n = 64,298, of which 82.11% were men) were characterized using a spectral decomposition of the time series and a wavelet analysis to evaluate the effect of seasonal changes, type of area (urban versus rural) and sex.

Results

A seasonal pattern was observed with statistically significant cycles every 12 months, where peaks were identified in May but only for men in urban zones as of the year 2007. In addition, specific days of the year were found to have a higher frequency of suicides, which coincided with holidays (New Year, Mother’s Day, Mexican Independence Day and Christmas).

Conclusion

A wavelet analysis can be used to decompose complex time series. To the best of our knowledge, this is the first application of this technique to the study of suicides in developing countries. This analysis enabled identifying a seasonal pattern among urban men in Mexico. The identification of seasonal patterns can help to create primary prevention strategies, increase the dissemination of crisis intervention strategies and promote mental health. These strategies could be emphasized during specific periods of the year and directed towards profiles with a higher risk.  相似文献   

10.
Islet cell autoantigen (ICA) 512 is a novel autoantigen of insulin-dependent diabetes mellitus (IDDM) which is homologous to receptor-type protein tyrosine phosphatases (++PTPases). We show that ICA 512 is an intrinsic membrane protein of secretory granules expressed in insulin-producing pancreatic beta-cells as well as in virtually all other peptide-secreting endocrine cells and neurons containing neurosecretory granules. ICA 512 is cleaved at its luminal domain and, following exposure at the cell surface, recycles to the Golgi complex region and is sorted into newly formed secretory granules. By immunoprecipitation, anti-ICA 512 autoantibodies were detected in 15/17 (88%) newly diagnosed IDDM patients, but not in 10/10 healthy subjects. These results suggest that tyrosine phosphorylation participates in some aspect of secretory granule function common to all neuroendocrine cells and that a subset of autoantibodies in IDDM is directed against an integral membrane protein of insulin-containing granules.  相似文献   

11.
Abstract Removal of the putative amino-terminal membrane spinning region of penicillin-binding protein 2' (PBP-2') of Staphylococcus epidermidis WT55 was carried out by truncating the amino terminus-coding end of the mecA gene, PCR and site directed mutagenesis were used to introduce unique restriction sites at position 68 ( Hin dIII) and at position 80 ( Nco I) of the mecA gene, respectively. The coupling of the shortened coding regions to the trc promoter and gene fusion to the lacZ gene, aimed to facilitate subsequent protein purifications, resulted in strong expression in the cytoplasm of Escherichia coli and partial sequestration into insoluble protein granules. The truncated PBP-2' retained its penicillin-binding ability and also bound the monoclonal antibody directed against PBP-2' of Staphylococcis aureus .  相似文献   

12.
Effects of cAMP accumulation on ATP-dependent priming and Ca(2+)-dependent fusion in Ca(2+)-regulated exocytosis were examined in antral mucous cells of guinea pigs by using video-enhanced contrast microscopy. The Ca(2+)-regulated exocytosis activated by 1 microM ACh consisted of two phases, an initial transient phase followed by a sustained phase, which were potentiated by cAMP accumulation. Depletion of ATP by 100 microM dinitrophenol (uncoupler of oxidative phosphorylation) or anoxia induced the sustained phase without the initial transient phase in Ca(2+)-regulated exocytosis. However, accumulation of cAMP before depletion of ATP induced and potentiated an initial transient phase followed by a sustained phase in Ca(2+)-regulated exocytosis. This suggests that the initial transient phase of Ca(2+)-regulated exocytosis is induced by fusion of all primed granules maintained by ATP and that accumulation of cAMP accelerates ATP-dependent priming of the exocytotic cycle. Moreover, ACh and Ca(2+) dose-response studies showed that accumulation of cAMP shifted the dose-response curves to the low concentration side, suggesting that it increases Ca(2+) sensitivity in the fusion of the exocytotic cycle. In conclusion, cAMP accumulation increases the number of primed granules and Ca(2+) sensitivity of the fusion, which potentiates Ca(2+)-regulated exocytosis in antral mucous cells.  相似文献   

13.
The effect was examined of the chemical decomposition of the potassium stain sodium hexanitrocobaltate (III) (SHC), on its ability to produce stain granules of consistent size that could be used to estimate the K+ contents of stomatal guard cells. Stomata in detached epidermis from leaves of Vicia faba (fava bean) were stimulated to accumulate K+ by treating them with fusicoccin. Stomatal apertures and the fraction of guard cell area covered by K+ precipitate granules (K+ score) were measured by digitizing photographic enlargements, and K+ scores were correlated with the age of stain that had been stored either in open or closed containers. The ability of stain aged in open containers to produce consistent fractional cell coverage was compared to 1) the ability of identically treated stain to precipitate K+ from solutions of KCI, and to 2) the kinetics of decomposition of SHC. It was found that the fractional coverage of guard cells of stomata opened to the same apertures decreased with a first order rate constant of 2.3 x 10(-5)/sec. The mass of precipitate formed by treatment of KCl solutions was unchanged for 2 hr after initial preparation of the SHC, and decreased thereafter with a first order rate constant of 1.0 x 10(-5)/sec. When stored in tightly sealed containers, nearly 100 hr were required for an occasionally opened bottle of SHC to decay to the same efficacy as a solution left open to the air for 8 hr.  相似文献   

14.
Lytic granules in cytotoxic lymphocytes, which include T cells and natural killer (NK) cells, are secretory lysosomes that release their content upon fusion with the plasma membrane (PM), a process known as degranulation. Although vesicle exocytosis has been extensively studied in endocrine and neuronal cells, much less is known about the fusion of lytic granules in cytotoxic lymphocytes. Here, we used total internal reflection fluorescence microscopy to examine lytic granules labeled with fluorescently tagged Fas ligand (FasL) in the NK cell line NKL stimulated with phorbol ester and ionomycin and in primary NK cells activated by physiological receptor-ligand interactions. Two fusion modes were observed: complete fusion, characterized by loss of granule content and rapid diffusion of FasL at the PM; and incomplete fusion, characterized by transient fusion pore opening and retention of FasL at the fusion site. The pH-sensitive green fluorescence protein (pHluorin) fused to the lumenal domain of FasL was used to visualize fusion pore opening with a time resolution of 30?ms. Upon incomplete fusion, pHluorin emission lasted several seconds in the absence of noticeable diffusion. Thus, we conclude that lytic granules in NK cells undergo both complete and incomplete fusion with the PM, and propose that incomplete fusion may promote efficient recycling of lytic granule membrane after the release of cytotoxic effector molecules.  相似文献   

15.
To study insulin exocytosis by monitoring the single insulin secretory granule motion, evanescent wave microscopy was used to quantitatively analyze the final stage of insulin exocytosis with biphasic release. Green fluorescent protein-tagged insulin transfected in MIN6 beta cells was packed in insulin secretory granules, which appeared to preferentially dock to the plasma membrane. Upon fusion evoked by secretagogues, evanescent wave microscopy revealed that fluorescence of green fluorescent protein-tagged insulin brightened, spread (within 300 ms), and then vanished. Under KCl stimulation, which represents the 1st phase of release, the successive fusion events were seen mostly from previously docked granules for the first minute, followed by the recruitment of new granules to the plasmalemmal docking sites. Stimulation with glucose, in contrast, caused the fusion events from previously docked granules for the first 120 s, thereafter a continuous fusion (2nd phase of release) was observed over 10 min mostly from newly recruited granules that progressively accumulated on the plasma membrane. Thus, our data revealed the distinct behavior of the insulin granule motion during the 1st and 2nd phase of release.  相似文献   

16.

Purpose

To describe a new technique to record focal macular electroretinograms (FMERGs) during vitrectomy to assess macular function.

Methods

Intraoperative FMERGs (iFMERGs) were recorded in ten patients (10 eyes) who undergo vitrectomy. iFMERGs were elicited by focal macular stimulation. The stimulus light was directed to the macular area through a 25 gauge (25G) glass fiber optic bundle. Background light was delivered through a dual chandelier-type light fiber probe. Focal macular responses elicited with combinations of stimulus and background luminances were analyzed.

Results

A stimulus luminance that was approximately 1.75 log units brighter than the background light was able to elicit focal macular responses that were not contaminated by stray light responses. Thus, a stimulus luminance of 160 cd/m2 delivered on a background of 3 cd/m2 elicited iFMEGs from only the stimulated area. This combination of stimulus and background luminances did not elicit a response when the stimulus was projected onto the optic nerve head. The iFMERGs elicited by a 10° stimulus with a duration of 100 ms and an interstimulus interval of 150 ms consisted of an a-, b-, and d-waves, the oscillatory potentials, and the photopic negative response (PhNR).

Conclusions

Focal ERGs with all components can be recorded from the macula and other retinal areas during vitreous surgery. This new technique will allow surgeons to assess the function of focal areas of the retina intraoperatively.  相似文献   

17.
It has been shown previously that mutan can be co-synthesized with starch when a truncated mutansucrase (GtfICAT) is directed to potato tuber amyloplasts. The mutan seemed to adhere to the isolated starch granules, but it was not incorporated in the starch granules. In this study, GtfICAT was fused to the N- or C-terminus of a starch-binding domain (SBD). These constructs were introduced into two genetically different potato backgrounds (cv. Kardal and amf), in order to bring GtfICAT in more intimate contact with growing starch granules, and to facilitate the incorporation of mutan polymers in starch. Fusion proteins of the appropriate size were evidenced in starch granules, particularly in the amf background. The starches from the various GtfICAT/SBD transformants seemed to contain less mutan than those from transformants with GtfICAT alone, suggesting that the appended SBD might inhibit the activity of GtfICAT in the engineered fusion proteins. Scanning electron microscopy showed that expression of SBD-GtfICAT resulted in alterations of granule morphology in both genetic backgrounds. Surprisingly, the amf starches containing SBD-GtfICAT had a spongeous appearance, i.e., the granule surface contained many small holes and grooves, suggesting that this fusion protein can interfere with the lateral interactions of amylopectin sidechains. No differences in physico-chemical properties of the transgenic starches were observed. Our results show that expression of granule-bound and “soluble” GtfICAT can affect starch biosynthesis differently.  相似文献   

18.
A. Pakula 《Neurophysiology》1973,5(5):345-350
Rebound was recorded in the latent pacemaker neuron ofLimnaea stagnalis as an off-response to incoming pulses of constant duration (50 msec) and different strengths (0.17–16.1 nA) or of different duration (10 msec-360 sec) and constant strength (5 nA). To pulses of short duration and weak strength this response consists of a single depolarization wave. With an increase in these parameters the wave gradually grows and is followed by a hyperpolarization wave. At an intensity of 10–12 nA or duration of about 200 msec the rebound response becomes spike-shaped, but the spike is completely formed only at 15.2 nA or 4–5 sec. The last stage of its formation is characterized by "constriction" of the depolarization component. A further increase in pulse intensity of the same duration does not change the rebound response. On the other hand, with a further increase in pulse duration in the corresponding series of experiments fresh spikes were continually added to the first, and depending on the choice of durations, this process could be followed step by step. At a duration of about 190 sec the rebound response reached saturation when it consisted of 8 spikes with a total response duration of about 5 sec. These results are used as the basis for a hypothesis of the possible organization of excitation of the somatic membrane of mollusk pacemaker neurons. Some aspects of the possible mechanism of rebound formation are discussed.Institute of Physiology and Pathology of the Cardiovascular System, Kaunas Medical Institute, Kaunas, Lithuania. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 451–459, September–October, 1973.  相似文献   

19.
In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified “large-capacitance flickers” that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent “compound cavicapture,” most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.  相似文献   

20.
Summary Using a monoclonal antibody (LK2H10) directed against human chromogranin, we have been able to localize this soluble glycoprotein to the matrix of secretory granules from a wide variety of endocrine cells. In the gut, enterochromaffin, enteroglucagon, glucose-dependent insulinotropic peptide, gastrin, and neurotensin-containing cells exhibit chromogranin immunoreactivity. In our system, chromogranin-immunoreactive material was restricted to the halo of human pancreatic glucagon-containing secretory granules within A-cells. Chromogranin immunoreactivity was also localized to secretory granules in phaeochromocytomas, gastrinomas, medullary carcinomas of the thyroid and a carotid body tumour (chemodectoma). Chromogranin is proposed as a potential marker for the ultrastructural recognition of endocrine cell secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号