首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang J  Zhang J  Wang Z  Zhu Q  Liu L 《Planta》2002,215(4):645-652
The possible regulation of senescence-initiated remobilization of carbon reserves in rice (Oryza sativa L.) by abscisic acid (ABA) and cytokinins was studied using two rice cultivars with high lodging resistance and slow remobilization. The plants were grown in pots and either well-watered (WW, soil water potential = 0 MPa) or water-stressed (WS, soil water potential = -0.05 MPa) from 9 days after anthesis until they reached maturity. Leaf water potentials of both cultivars markedly decreased at midday as a result of water stress but completely recovered by early morning. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress accelerated starch remobilization in the stems, promoted the re-allocation of pre-fixed (14)C from the stems to grains, shortened the grain-filling period and increased the grain-filling rate. Sucrose phosphate synthase (SPS, EC 2.4.1.14) activity was enhanced by water stress and positively correlated with sucrose accumulation in both the stem and leaves. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the root exudates and leaves. ABA significantly and negatively, while Z+ZR positively, correlated with Pr and Chl of the flag leaves. ABA, not Z+ZR, was positively and significantly correlated with SPS activity and remobilization of pre-stored carbon. Spraying ABA reduced Chl in the flag leaves, and enhanced SPS activity and remobilization of carbon reserves. Spraying kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization is attributed to an elevated ABA level in rice plants subjected to water stress.  相似文献   

2.
To understand the effect of water stress on the remobilization of prestored carbon reserves, the changes in the activities of starch hydrolytic enzymes and sucrose-phosphate synthase (SPS) in the stems of rice (Oryza sativa L.) during grain filling were investigated. Two rice cultivars, showing high lodging-resistance and slow remobilization, were grown in the field and subjected to well-watered (WW, psi(soil)=0) and water-stressed (WS, psi(soil)=-0.05 MPa) treatments 9 d after anthesis (DAA) till maturity. Leaf water potentials of both cultivars markedly decreased during the day as a result of WS treatment, but completely recovered by early morning. WS treatment accelerated the reduction of starch in the stems, promoted the reallocation of prefixed (14)C from the stems to grains, shortened the grain filling period, and increased the grain filling rate. More soluble sugars including sucrose were accumulated in the stems under WS than under WW treatments. Both alpha- and beta-amylase activities were enhanced by the WS, with the former enhanced more than the latter, and were significantly correlated with the concentrations of soluble sugars in the stems. The other two possible starch-breaking enzymes, alpha-glucosidase and starch phosphorylase, showed no significant differences in the activities between the WW and WS treatments. Water stress also increased the SPS activity that is responsible for sucrose production. Both V(limit) and V(max), the activities of the enzyme at limiting and saturating substrate concentrations, were enhanced and the activation state (V(limit)/V(max)) was also increased as a result of the more significant enhancement of V(limit). The enhanced SPS activity was closely correlated with an increase of sucrose accumulation in the stems. The results suggest that the fast hydrolysis of starch and increased carbon remobilization were attributed to the enhanced alpha-amylase activity and the high activation state of SPS when the rice was subjected to water stress.  相似文献   

3.
This study investigated the possibility that abscisic acid (ABA) and cytokinins may mediate the effect of water deficit that enhances plant senescence and remobilization of pre‐stored carbon reserves. Two high lodging‐resistant wheat (Triticum aestivum L.) cultivars were field grown and treated with either a normal or high amount of nitrogen at heading. Well‐watered (WW) and water‐stressed (WS) treatments were imposed from 9 d post‐anthesis until maturity. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress facilitated the reduction of non‐structural carbohydrate in the stems and promoted the re‐allocation of prefixed 14C from the stems to grains, shortened the grain filling period and increased the grain filling rate. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the stems and leaves. ABA correlated significantly and negatively, whereas Z + ZR correlated positively, with Pr and Chl of the flag leaves. ABA but not Z + ZR, was positively and significantly correlated with remobilization of pre‐stored carbon and grain filling rate. Exogenous ABA reduced Chl in the flag leaves, enhanced the remobilization, and increased grain filling rate. Spraying with kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization and accelerated grain filling rate are attributed to an elevated ABA level in wheat plants when subjected to water stress.  相似文献   

4.
Elevated [CO2] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open‐top chambers (OTC) under ambient (~380 ppm), and high (~760 ppm) [CO2]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re‐watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1‐SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2] treatments, 1‐FFT and 1‐FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1‐kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought.  相似文献   

5.
There is great interest in the fructosyltransferases (FTFs) involved in fructan metabolism and agents affecting their activity. Agaves accumulate fructans, fructose polymers linked by glycosidic β(2–1) and β(2–6) bonds in linear or branched configurations. In plants, fructans provide protection under stress conditions. The sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT), fructan:fructan 6G-fructosyltransferase (6G-FFT), and fructan exohydrolase (FEH) activities were analyzed in micropropagated Agave tequilana plants in the absence and presence of HgCl2, AgNO3, MgCl2, sodium deoxycholate (DNa), and sodium dodecyl sulfate (SDS). Kestose, nystose and neokestose were synthesized by the respective FTFs. HgCl2 and AgNO3 inhibited all FTFs, mainly up to 90 % in 1-SST and 1-FFT. DNa increased 1-SST (32 %) and 1-FFT (45 %) activities, and SDS increased 6G-FFT activity by 96 %. Finally, AgNO3 inhibited FEH activity by 78 %. Our results might be relevant on the regulation of FTFs in agave and other crops, for instance by the increment the fructans synthesis in stressed plants.  相似文献   

6.
Sucrose: sucrose 1-fructosyltransferase (1-SST) cDNA from Lactuca sativa, coding the enzyme responsible for lower degree polymers fructan biosynthesis, was cloned by RT-PCR and RACE methods. The 1-SST cDNA under the control of CaMV 35S promoter was introduced into tobacco by Agrobacterium-mediated leaf disc transformation protocol. Fructan synthesis in vitro and carbohydrate analysis showed that sense transgenic tobacco plant displayed sucrose: sucrose 1-fructosyltransferse activity. After freezing stress, significant increases in electrolyte leakage and malondialdehyde were found in the wild type and anti-sense transgenic plants, while no apparent differences were observed in sense transgenic plants. Meanwhile, water soluble carbohydrate, fructan and fructose of sense transgenic plants remarkably increased, compared with those of wild type and anti-sense plants. No significant difference was detected in superoxide dismutase activity between transgenic and wild type plants. The above results demonstrated that the expression of 1-SST gene improved the freezing resistance of transgenic tobacco plants.  相似文献   

7.
8.
Behboudian  M.H.  Ma  Q.  Turner  N.C.  Palta  J.A. 《Photosynthetica》2000,38(1):155-157
The rate of photosynthesis (P N) in leaves and pods as well as carbon isotope content in leaves, pod walls, and seeds was measured in well-watered (WW) and water-stressed (WS) chickpea plants. The P N, on an area basis, was negligible in pods compared to leaves and was reduced by water stress (by 26%) only in leaves. WS pod walls and seeds discriminated less against 13CO2 than did the controls. This response was not observed for leaves as is usually the case. Pod walls and seeds discriminated less against 13CO2 than did leaves in both WW and WS plants. Measurement of carbon isotope composition in pods may be a more sensitive tool for assessing the impact of water stress on long-term assimilation than is the instantaneous measurement of gas exchange rates.  相似文献   

9.
Remobilization of stored carbohydrates in the stem of wheat plants is an important contributor to grain filling under drought stress (DS) conditions. A massive screening on Iranian wheat cultivars was performed based on stem dry weight changes under well-watered and DS conditions. Two cultivars, Shole and Crossed Falat Hamun (CFH), with different fructan accumulation and remobilization behavior were selected for further studies. Water-soluble carbohydrates (WSCs) and fructan metabolizing enzymes were studied both in the stem penultimate and in sucrose (Suc) treated, excised leaves. Under drought, CFH produced higher grain yields than Shole (412 vs 220 g m(-2)). Also, grain yield loss under drought was more limited in CFH than in Shole (17 vs 54%). Under drought, CFH accumulated more graminan-type fructo-oligosaccharides than Shole. After anthesis, fructan 6-exohydrolase (6-FEH; EC 3.2.1.154) activities increased more prominently than fructan 1-exohydrolase (EC 3.2.1.153) activities during carbon remobilization. Interestingly, CFH showed higher 6-FEH activities in the penultimate than Shole. The field experiment results suggest that the combined higher remobilization efficiency and high 6-FEH activities in stems of wheat could contribute to grain yield under terminal drought. Similar to the penultimate, fructan metabolism differed strongly in Suc-treated detached leaves of selected cultivars. This suggests that variation in the stem fructan among wheat cultivars grown in the field could be traced by leaf blade induction experiments.  相似文献   

10.
Fructan: fructan fructosyl transferase (FFT, EC 2.4.1.100) was purified from chicory (Cichorium intybus L. var. foliosum cv. Flash) roots by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, and anion- and cation-exchange chromatography. This protocol produced a 60-fold purification and a specific activity of 14.5 mol·(mg protein) –1·min–1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On sodium dodecyl sulfatepolyacrylamide gel electrophoresis and mass spectrometry, 52-kDa and 17-kDa fragments were found, suggesting that the enzyme was a heterodimer. Optimal activity was found between pH 5.5 and 6.5. The enzyme used 1-kestose, 1,1-nystose, oligofructan and commercial chicory root inulin (degree of polymerization 10) as donors and acceptors. Sucrose was the best acceptor but could not be used as a donor. However, at higher concentrations sucrose acted as a competitive inhibitor for donors of FFT. 1-Kestose was the most efficient and 1,1-nystose the least efficient donor. The purified enzyme exhibited -fructosidase activity, specially at higher temperatures and lower substrate concentrations. The synthesis of fructans from 1-kestose decreased at higher temperatures (5–50°C). Therefore enzyme assays were performed at 0°C. The same fructan oligosaccharides, with a distribution similar to that observed in vivo, were obtained upon incubation of the enzyme with sucrose and commercial chicory root inulin.Abbreviations Con A concanavalin A - DP degree of polymerization - FFT fructan: fructan fructosyl transferase - Fru fructose - Glc glucose - Kes 1-kestose - MALDI-TOF MS matrix-assisted laser desorption ionisation time of flight mass spectrometry - Nys 1,1-nystose - pI isoelectric point - SST sucrose: sucrose fructosyl transferase - Suc sucrose The authors would like to thank E. Nackaerts for valuable assistance. W. Van den Ende is also grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants. P. Verhaert is a research associate of the NFSR. This work was also supported by grant OT/91/18 from the Research Fund K.U. Leuven.  相似文献   

11.
12.
Although fructans occur widely in several plant families and they have been a subject of investigation for decennia, the mechanism of their biosynthesis is not completely elucidated. We succeeded in purifying a fructan: fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) from chicory roots (Cichorium intybus L. var. foliosum cv. Flash). In combination with the purified chicory root sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99), this enzyme synthesized a range of naturally occurring chicory fructans (inulins) from sucrose as the sole substrate. Starting from physiologically relevant sucrose concentrations, inulins up to a degree of polymerization (DP) of about 20 were synthesized in vitro after 96 h at 0°C. Neither 1-SST, nor 1-FFT alone could mediate the observed fructan synthesis. Fructan synthesis in vitro was compared starting from 50, 100 and 200 mM sucrose, respectively. The initiation of (DP > 3)-fructan synthesis was found to be correlated with a certain ratio of 1 kestose to sucrose. The data presented now provide strong evidence to validate the 1-SST/1-FFT model for in-vivo fructan synthesis, at least in the Asteraceae.Abbreviations DP degree of polymerization - 1-FFT fructan: fructan 1-fructosyl transferase - 1-SST sucrose: sucrose 1-fructosyl transferase The authors thank E. Nackaerts for valuable technical assistance. W. Van den Ende is grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants.  相似文献   

13.
C. Kaya  D. Higgs  H. Kirnak  I. Tas 《Plant and Soil》2003,253(2):287-292
The effect of arbuscular mycorrhizal (AM) colonisation by Glomus clarum on fruit yield and water use efficiency (WUE) was evaluated in watermelon (Citrullus lanatus) cv. Crimson Sweet F1 under field conditions. Treatments were: (1) well-watered plants without mycorrhizae (WW-M), (2) well-watered plants with mycorrhizae (WW+M), (3) water- stressed plants without mycorrhizae (WS-M) and (4) water-stressed plants with mycorrhizae (WS+M). When soil water tension readings reached –20 and –50 kPa for well-watered (WW) and water-stressed (WS) treatments, respectively, irrigation was initiated to restore the top soil to near field capacity. Water stress reduced watermelon shoot and root dry matter, fruit yield, water use efficiency but not total soluble solids (TSS) in the fruit, compared with the non-stressed treatments. Mycorrhizal plants had significantly higher biomass and fruit yield compared to nonmycorrhizal plants, whether plants were water stressed or not. AM colonisation increased WUE in both WW and WS plants. Macro- (N, P, K, Ca and Mg) and micro- (Zn, Fe and Mn) nutrient concentrations in the leaves were significantly reduced by water stress. Mycorrhizal colonisation of WS plants restored leaf nutrient concentrations to levels in WW plants in most cases. This is the first report of the mitigation of the adverse effect of water stress on yield and quality of a fruit crop.  相似文献   

14.
Kawakami A  Yoshida M 《Planta》2005,223(1):90-104
Fructans play important roles not only as a carbon source for survival under persistent snow cover but also as agents that protect against various stresses in overwintering plants. Complex fructans having both ß-(2,1)- and ß-(2,6)-linked fructosyl units accumulate in wheat (Triticum aestivum L.) during cold hardening. We detected fructan: fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) activity for catalyzing the formation and extension of ß-(2,1)-linked fructans in hardened wheat tissues, cloned cDNAs (wft3 and wft4) of 1-FFT, and analyzed the enzymatic properties of a wft3 recombinant protein (Wft3m) produced by yeast. Wft3m transferred ß-(2,1)-linked fructosyl units to phlein, an extension of sucrose through ß-(2,6)-linked fructosyl units, as well as to inulin, an extension of sucrose through ß-(2,1)-linked fructosyl units, but could not efficiently synthesize long inulin oligomers. Incubation of a mixture of Wft3m and another recombinant protein of wheat, sucrose:fructan 6-fructosyltransferase (6-SFT), with sucrose and 1-kestotriose produced fructans similar to those that accumulated in hardened wheat tissues. The results demonstrate that 1-FFT produces branches of ß-(2,1)-linked fructosyl units to phlein and graminan oligomers synthesized by 6-SFT and contributes to accumulation of fructans containing ß-(2,1)- and ß-(2,6)-linked fructosyl units. In combination with sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and 6-SFT, 1-FFT is necessary for fructan synthesis in hardened wheat.  相似文献   

15.
该试验以荒漠区主要建群种红砂幼苗为研究对象,设置适宜水分(CK)、轻度干旱(MD)、中度干旱(SD)和重度干旱(VSD)4个胁迫处理(即田间持水量的80%、60%、40%和20%),采用盆栽控水试验,分别测定干旱胁迫15、30、45和60 d时红砂幼苗的叶、茎、粗根和细根中非结构碳水化合物(NSC)及其组分的含量,分析不同胁迫强度下不同干旱持续时间红砂幼苗NSC的动态变化及各组分差异,以揭示红砂NSC对干旱胁迫的响应机制。结果表明:(1)干旱胁迫强度和胁迫持续时间对红砂幼苗不同器官NSC及其组分均有显著影响,其中胁迫持续时间对NSC动态变化的影响尤为显著。(2)干旱胁迫初期,红砂叶中的NSC含量呈下降趋势,而茎中的NSC含量呈上升趋势,粗根和细根中NSC含量在各胁迫处理下基本保持稳定。(3)干旱胁迫后期,红砂叶和茎中的可溶性糖、淀粉和NSC含量逐渐增加,而粗根和细根中的淀粉和NSC含量呈下降趋势(中度干旱除外),且这一时期重度干旱处理下各器官可溶性糖和NSC的含量明显高于CK。研究发现,重度干旱胁迫能显著诱导提高红砂幼苗不同器官中的NSC含量,并通过分解根中淀粉和增加叶片中可溶性糖含量的方式来调节细胞渗透势平衡,以维持细胞活力,进而保持红砂在干旱胁迫后期的存活。  相似文献   

16.
近年来亚热带地区极端气候事件热浪发生频率增加,热浪频次及间隔时间的变化使热浪发生的模式及其对植物的胁迫方式更加多样化。高频热浪不仅通过热胁迫影响植物的碳固持速率,还会间接形成水分胁迫造成植物水力结构发生障碍,影响碳水化合物的运输。然而,目前亚热带树木水力结构和非结构性碳水化合物(NSC)对复杂热浪的模式的响应仍不明确。以亚热带主要阔叶树种闽楠(Phoebe bournei)和木荷(Schima superba)苗木为研究对象进行了热浪模拟试验,关注不同热浪频次(单次,两次)及重复热浪间隔时间(短间隔、中间隔、长间隔)对苗木茎部水力结构特征及NSC的影响,使用冲洗法测定水力结构中的导水率(Kh)、最大导水率(Kmax)、比导率(Ks)、木质部栓塞百分数(PLC),使用蒽酮-硫酸比色法测定茎段非结构性碳水化合物含量。结果表明,(1)闽楠和木荷的水力结构和非结构性碳水化合物在树种间存在显著差异;(2)不同热浪频次对闽楠和木荷的Kmax和PLC影响存在显著差异;(3)重复热浪间隔时间变长,木荷茎栓塞减轻,而闽楠茎栓塞增加,且植株栓塞越严重,茎NSC含量越少。总体上,闽楠的水力传输系统对热浪抗性较弱,在热浪后栓塞严重,导水率下降且无法完全恢复,且NSC含量与栓塞程度相关性较弱;而木荷水力传输系统抗性较强,在热浪后导水能力可能恢复至未受干扰水平,且其恢复程度与NSC含量紧密相关。该研究结果表明,高频热浪的发生会显著影响闽楠和木荷苗木茎部的导水能力,且不同间隔时间的重复热浪事件对植物水力结构的影响存在差异性,并且两个亚热带阔叶树种对热浪伴随的高温和水分胁迫的耐受性和耐受机制存在差异。  相似文献   

17.
马文静  魏小红  宿梅飞  骆巧娟  赵颖 《生态学报》2019,39(21):8068-8077
以紫花苜蓿(Medicago sativa)为材料,采用盆栽试验方法,用聚乙二醇(PEG-6000)作为渗透介质模拟干旱胁迫,外源喷施NO供体硝普钠,NO清除剂(carboxy-PTIO,cPTIO),对紫花苜蓿幼苗叶片、根系中非结构性碳水化合物含量及相关酶活性的变化进行研究,探讨NO对紫花苜蓿耐旱机制的作用。结果表明:外源NO促进了紫花苜蓿叶片中淀粉的分解、根系中淀粉的积累,提高叶片及根系中可溶性糖(蔗糖、果糖和葡萄糖)含量,降低了渗透势,促进细胞吸水,缓解干旱造成的损伤。此外,外源NO能提高干旱胁迫下紫花苜蓿叶片中蔗糖合成酶(SS)、酸性转化酶(AI)和中性转化酶(NI)活性,降低了蔗糖磷酸合成酶(SPS)的活性,提高根系中SS、SPS和转化酶活性,使蔗糖的合成与分解处于高水平的动态平衡,增强了紫花苜蓿的抗旱性。而NO清除剂cPTIO则会不同程度的抑制紫花苜蓿幼苗中非结构性碳水化合物(NSC)及其相关酶活性。因此,NO可以通过调控NSC的代谢响应干旱胁迫,缓解干旱胁迫造成的不利影响,在紫花苜蓿的抗旱中扮演着重要的角色。  相似文献   

18.
Sucrose: sucrose fructosyltransferase and fructan:fructan fructosyltransferase were isolated from the inner leaf bases of bulbing onion plants (Allium cepa) and separated by gel filtration on Bio-Gel P-150. Sucrose:sucrose fructosyltransferase produced only one trisaccharide, 1F-fructosylsucrose, from sucrose. Fructan:fructan fructosyltransferase produced tetrasaccharide and higher polymers from trisaccharide. The trisaccharide found in the greatest concentration in onion, 6G-fructosylsucrose, was produced from 1F-fructosylsucrose by fructan:fructan fructosyltransferase and was not a product of sucrose:sucrose fructosyltransferase.  相似文献   

19.
Fructan is an important class of non-structural carbohydrates present in cool-season grasses. Sucrose: fructan 6-fructosyltransferase (6-SFT, EC 2.4.1.10), one of the enzymes thought to be involved in grass fructan biosynthesis, catalyzes the initiation and extension of 2,6-linked fructans.Myo-inositol is a central component in several metabolic pathways in higher plants.Myo-inositol 1-phosphate synthase (MIPS) (EC 5.5.1.4), the first enzyme in inositolde novo biosynthesis, catalyzes the formation ofmyo-inositol 1-phosphate (MIP) from glucose-6-phosphate. The expression of 6-SFT and MIPS genes is compared in barley (Hordeum vulgare L.) leaves under various conditions. In cool temperature treatments, both 6-SFT and MIPS mRNAs accumulate within two days and then decline after four days. Under warm temperatures and continuous illumination, the amount of 6-SFT and MIPS mRNA gradually accumulated in detached leaves and increased significantly by 8 h. In contrast, we observed no significant changes over time in attached (control) leaves. Treating detached leaves with glucose or sucrose in the dark resulted in accumulations of both 6-SFT and MIPS mRNA. Homologous expression patterns for 6-SFT and MIPS genes suggest that they may be similarly regulated in barley leaves. Although sucrose and glucose may play important roles in the expression of 6-SFT and MIPS genes, regulation likely involves multiple factors.  相似文献   

20.
Inoculated soybeans (Glycine max L. (Merrill)) were grown in controlled environments to evaluate the relationship between genotype and plant water status on nodule function, nitrogen assimilation, growth rates, and seed yield. Plants were grown under well-watered (WW) and water-stressed (WS) conditions during the linear pod-filling growth stage in sand culture using N-free nutrient solution. Dry matter and N accumulation were greater for the drought-adapted Plant Introduction 416937 (PI) than for Forrest, a commercially adapted genotype of similar phenology. These differences are attributed to: (i) more favorable internal water balance throughout the pod-filling period (higher total leaf water potential), (ii) higher photosynthetic function (more total leaf area and higher net carbon exchange rates), and (iii) stronger nodule function (larger nodule mass, greater specific and total nodule activity, and thus more nitrogen assimilation) for the PI than for Forrest. While Forrest out yielded the PI under WW conditions, the percentage reduction in seed mass per plant was less for the PI than for Forrest when both genotypes were exposed to desiccating conditions. The inference is that soybean germplasm with the capacity to maintain tissue turgidity, and thus leaf and nodule function, during reproductively-imposed desiccation may reduce the extent to which yield is compromised during drought. These findings have implications for the role of symbiotic nitrogen fixation in conserving yield under dry weather conditions.Abbreviations DAE Days After Emergence - NCE Net CO2 Exchange - PI PI 416937 - SNA Specific Nodule Activity - TNA Total Nodule Activity - WS Water Stressed - WW Well Watered  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号