首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

2.
Regulation of the Na+/K+-ATPase by insulin: Why and how?   总被引:4,自引:0,他引:4  
The sodium-potassium ATPase (Na+/K+-ATPase or Na+/K+-pump) is an enzyme present at the surface of all eukaryotic cells, which actively extrudes Na+ from cells in exchange for K+ at a ratio of 3:2, respectively. Its activity also provides the driving force for secondary active transport of solutes such as amino acids, phosphate, vitamins and, in epithelial cells, glucose. The enzyme consists of two subunits ( and ) each expressed in several isoforms. Many hormones regulate Na+/K+ -ATPase activity and in this review we will focus on the effects of insulin. The possible mechanisms whereby insulin controls Na+/K+-ATPase activity are discussed. These are tissue- and isoform-specific, and include reversible covalent modification of catalytic subunits, activation by a rise in intracellular Na+ concentration, altered Na+ sensitivity and changes in subunit gene or protein expression. Given the recent escalation in knowledge of insulin-stimulated signal transduction systems, it is pertinent to ask which intracellular signalling pathways are utilized by insulin in controlling Na+/K+-ATPase activity. Evidence for and against a role for the phosphatidylinositol-3-kinase and mitogen activated protein kinase arms of the insulin-stimulated intracellular signalling networks is suggested. Finally, the clinical relevance of Na+/K+-ATPase control by insulin in diabetes and related disorders is addressed.  相似文献   

3.
The increase in concentration of ammonia in lake water during the degradation of algal blooms may last for several weeks and thus cause chronic toxicity to aquatic organisms. The purpose of this study was to assess the chronic toxicity of ammonia on the selected hematological parameters and gill Na+/K+ ATPase activity of juvenile crucian carp Carassius auratus during elevated ammonia exposure and the post-exposure recovery. Juvenile crucian carp were exposed in different ammonia solutions for 45 days and then immediately transferred to pristine freshwater to initiate a 15-day recovery period. Results showed sub-lethal ammonia significantly deters growth and a 15-day recovery period was not sufficient for the fish to compensate for the loss of growth. The fish exhibited a continuous decrease in red blood cell (RBC), the total hemoglobin (Hb), and gill Na+/K+ ATPase activity as the concentration of NH3-N increased. After the 15-day recovery period, RBC, Hb, and gill Na+/K+ ATPase activity had recovered to similar levels as the controls.  相似文献   

4.
Diabetes mellitus induces a decrease in sodium potassium-adenosine triphosphatase (Na+/K+- ATPase) activity in several tissues in the rat and red blood cells (RBC) and nervous tissue in human patients. This decrease in Na+/K+- ATPase activity is thought to play a role in the development of long term complications of the disease. Angiotensin enzyme inhibitors (ACEi) and angiotensin-II receptor antagonists (ARBs) reduce proteinuria and retard the progression of renal failure in patients with IDDM and diabetic rats. We investigated the effects of captopril and losartan, which are used in the treatment of diabetic nephropathy, on Na+/K+- ATPase activity. Captopril had an inhibitory effect on red cell plasma membrane Na+/K+ ATPase activity, but losartan did not. Our study draws attention to the inhibitory effect of captopril on Na+/K+ ATPase activity. Micro and macro vascular complications are preceeding mortality and morbidity causes in diabetes mellitus. There is a strong relationship between the decrease in Na+/K+ ATPase activity and hypertension. The non-sulphydryl containing ACEi and ARBs must be the choice of treatment in hypertensive diabetic patients and diabetic nephropathy.  相似文献   

5.
The effects of three amino group reagents on the activity of (Na++K+)-ATPase3 and its component K+-stimulatedp-nitrophenylphosphatase activity from rabbit kidney outer medulla have been studied. All three reagents cause inactivation of the enzyme. Modification of amino groups with trinitrobenzene sulfonic acid yields kinetics of inactivation of both activities, which depend on the type and concentration of the ligands present. In the absence of added ligands, or with either Na+ of Mg2+ present, the enzyme inactivation process follows complicated kinetics. In the presence of K+, Rb+, or Tl+, protection occurs due to a change of the kinetics of inactivation toward a first-order process. ATP protects against inactivation at a much lower concentration in the absence than in the presence of Mg2+ (P 50 6 µM vs. 1.2 mM). Under certain conditions (100 µM reagent, 0.2 M triethanolamine buffer, pH 8.5) modification of only 2% of the amino groups is sufficient to obtain 50% inhibition of the ATPase activity. Modification of amino groups with ethylacetimidate causes a nonspecific type of inactivation of (Na++K+)-ATPase. Mg2+ and K+ have no effects, and ATP only a minor effect, on the degree of modification. The K+-stimulatedp-nitrophenylphosphatase activity is less inhibited than the (Na++K+)-ATPase activity. Half-inhibition of the (Na++K+)-ATPase is obtained only after 25% modification of the amino groups. Modification of amino groups with acetic anhydride also causes nonspecific inactivation of (Na++K+)-ATPase. Mg2+ has no effect, and ATP has only a slight protecting effect. The K+-stimulatedp-nitrophenylphosphatase activity is inhibited in parallel with the (Na++K+)-ATPase activity. Half-inactivation of the (Na++K+)-ATPase activity is obtained after 20% modification of the amino groups.This article is No. 52 in the series Studies on (Na++K+)-Activated ATPase.  相似文献   

6.
Using31P-,23Na- and39K-NMR, we assessed ischemic changes in high energy phosphates and ion contents of isolated perfused rat hearts continuously and systematically. To discriminate intra- and extracellular Na+, a shift reagent (Dy(TTHA)3–) was used in23Na-NMR study. In39K-NMR study, the extracellular K+ signal was suppressed by inversion recovery pulse sequence in order to obtain intracellular K+ signal without using shift reagnets. During the early period of ischemia, increases in intracellular Na+ and inorganic phosphate (Pi) were observed in addition to the well-documented decreases in creatine phosphate and ATP and a fall of intracellular pH, suggesting an augmented operation of Na+–H+ exchange triggered by a fall of the intracellular pH resulted from breakdown of ATP. At around 15 min of ischemia, a second larger increase in intracellular Na+ and a decrease in intracellular K+ were observed in association with a second increase in Pi. This was accompnanied by an abrupt rise of the ventricular end-diastolic pressure. As there was a depletion of ATP at this time, the increase in intracellular Na+ and associated decrease in intracellular K+ may be explained by inhibition of the Na+–K+ ATPase due to the depletion of ATP. A longer observation with31P-NMR revealed a second phosphate peak (at lower magnetic field to ordinary Pi peak) which increased its intensity as ischemic time lengthened. The pH of this 2nd peak changed in parallel with the changes in pH of the bathing solution, indicating the appearance of a compartment whose hydrogen concentration is in equilibrium with that of the external compartment. Thus, the peak could be used as an index of irreversible membrane damage of the myocardium.  相似文献   

7.
Treatment of bovine pulmonary smooth muscle cells with U46619 inhibited the Na+/K+ ATPase activity in two parallel pathways: one of which is mediated via glutathionylation of the pump and the other by augmenting the inhibitory activity of the 70 kDa inhibitor protein of Na+/K+ ATPase. Although phospholemman deglutathionylates the pump leading to its activation, the inhibitor is responsible for irreversible inhibition of Na+/K+ ATPase in an isoform specific manner during treatment of the cells with U46619.  相似文献   

8.
The Na+–K+ ATPase activity and SH group content were decreased whereas malondialdehyde (MDA) content was increased upon treating the porcine cardiac sarcolemma with xanthine plus xanthine oxidase, which is known to generate superoxide and other oxyradicals. Superoxide dismutase either alone or in combination with catalase and mannitol fully prevented changes in SH group content but the xanthine plus xanthine oxidase-induced depression in Na+–K+ ATPase activity as well as increase in MDA content were prevented partially. The Lineweaver-Burk plot analysis of the data for Na+–K+ ATPase activity in the presence of different concentrations of MgATP or Na+ revealed that the xanthine plus xanthine oxidase-induced depression in the enzyme activity was associated with a decrease in Vmax and an increase in Km for MgATP; however, Ka value for Na+ was decreased. Treatment of sarcolemma with H2O2 plus Fe2+, an hydroxyl and other radical generating system, increased MDA content but decreased both Na+–K+ ATPase activity and SH group content; mannitol alone or in combination with catalase prevented changes in SH group content fully but the depression in Na+–K+ ATPase activity and increase in MDA content were prevented partially. The depression in the enzyme activity by H2O2 plus Fe2+ was associated with a decrease in Vmax and an increase in Km for MgATP. These results indicate that the depressant effect of xanthine plus xanthine oxidase on sarcolemmal Na+–K+ ATPase may be due to the formation of superoxide, hydroxyl and other radicals. Furthermore, the oxyradical-induced depression in Na+–K+ ATPase activity may be due to a decrease in the affinity of substrate in the sarcolemmal membrane.  相似文献   

9.
This study examined the status of sarcolemmal Na+/K+-ATPase activity in rat heart under conditions of Ca2+-paradox to explore the existence of a relationship between changes in Na+/K+-pump function and myocardial Na+ as well as K+ content. One min of reperfusion with Ca2+ after 5 min of Ca2+-free perfusion reduced Na+/K+-ATPase activity in the isolated heart by 53% while Mg2+-ATPase, another sarcolemmal bound enzyme, retained 74% of its control activity. These changes in sarcolemmal ATPase activities were dependent on the duration and Ca2+ concentration of the initial perfusion and subsequent reperfusion periods; however, the Na+/K+-ATPase activity was consistently more depressed than Mg2+-ATPase activity under all conditions. The depression in both enzyme activities was associated with a reduction in Vmax without any changes in Km values. Low Na+ perfusion and hypothermia, which protect the isolated heart from the Ca2+-paradox, also prevented reperfusion-induced enzyme alterations. A significant relationship emerged upon comparison of the changes in myocardial Na+ and K+ content to Na+/K+-ATPase activity under identical conditions. At least 60% of the control enzyme activity was necessary to maintain normal cation gradients. Depression of the Na+/K+-ATPase activity by 60-65% resulted in a marked increase and decrease in intracellular Na+ and K+ content, respectively. These results suggest that changes in myocardial Na+ and K+ content during Ca2+-paradox are related to activity of the Na+/K+-pump; the impaired Na+/K+-ATPase activity may lead to augmentation of Ca2+-overload via an enhancement of the Na+/Ca2+-exchange system.  相似文献   

10.
Enterococcus hirae grows in a broad pH range from 5 to 11. An E. hirae mutant 7683 lacking the activities of two sodium pumps, Na+-ATPase and Na+/H+ antiporter, does not grow in high Na+ medium at pH above 7.5. We found that 7683 grew normally in high Na+ medium at pH 5.5. Although an energy-dependent sodium extrusion at pH 5.5 was missing, the intracellular levels of Na+ and K+ were normal in this mutant. The Na+ influx rates of 7683 and two other strains at pH 5.5 were much slower than those at pH 7.5. These results suggest that Na+ elimination of this bacterium at acid pH is achieved by a decrease in Na+ entry and a normal K+ uptake.  相似文献   

11.
Summary To identify ion transport systems involved in the maintenance of vascular smooth muscle cell volume the effects of incubation medium osmolality and ion transport inhibitors on the volume and 86Rb and 22Na transport in cultured smooth muscle cells from rat aorta (VSMC) have been studied. A decrease of medium osmolality from 605 to 180 mosm increased intracellular water volume from 0.6 to 1.3 l per 106 cells. Under isosmotic conditions, cell volume was decreased by ouabain (by 10%, P< 0.005) but was not influenced by bumetanide, furosemide, EIPA and quinidine. These latter compounds were also ineffective in cell volume regulation under hypotonic buffer conditions. Under hyperosmotic conditions, cell volume was decreased by bumetanide (by 7%, P<0.05) and by ethylisopropyl amiloride (by 13%, P< 0.005). Ouabain-sensitive 86Rb influx was decreased by 30–40% under hypoosmotic conditions. An increase in medium osmolality from 275 to 410 mosm resulted in an eightfold increase in bumetanide-inhibited 86Rb influx and 86Rb efflux. The (ouabain and bumetanide)-insensitive component of 86Rb influx was not dependent on the osmolality of the incubation medium. However (ouabain and bumetanide)-insensitive 86Rb efflux was increased by 1.5–2 fold in VSMC incubated in hypotonic medium. Ethylisopropyl amiloride-inhibited 22Na influx was increased by sixfold following osmotic-shrinkage of VSMC. The data show that both Na+/H+ exchange and Na+/K+/2Cl cotransport may play a major role in the regulatory volume increase in VSMC. Basal and shrinkage-induced activities of Na+/K+/2Cl cotransport in VSMC were similarly sensitive to inhibition by either staurosporin, forskolin, R24571 or 2-nitro4-carboxyphenyl N,N-diphenylcarbomate (NCDC). In contrast basal and shrinkage-induced Na+/K+/2Cl cotransport were differentially inhibited by NaF (by 30 and 65%, respectively), suggesting an involvement of guanine nucleotide binding proteins in the volume-sensitive activity of this carrier. Neither staurosporin, forskolin, R24571 nor NCDC influenced shrinkage-induced Na+/H+ exchange activity. NaF increased Na+/H+ exchanger activity under both isosmotic and hyperosmotic conditions. These data demonstrate that different intracellular signalling mechanisms are involved in the volume-dependent activation of the Na+/K+/2Cl cotransporter and the Na+/H+ exchanger.The authors gratefully acknowledge the financial support of the Swiss National Foundation, grant No. 3.817.087. Bernadette Weber is thanked for preparing the figures.  相似文献   

12.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

13.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

14.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

15.
Four stable hybridoma cell lines secreting antibodies specific to the membrane (Na+ + K+)-dependent ATPase isolated from lamb kidney medulla have been produced by fusing mouse myeloma cells with spleen cells from immunized mice. These cell lines produce IgG γ1 heavy chain and κ light chain antibodies which are directed against the catalytic or α-subunit of the (Na+ + K+)-ATPase enzyme. Binding studies, using antibodies that were produced by growing hybridomas in vivo and purified by affinity column chromatography, suggest a somewhat higher affinity of these antibodies for the isolated α-subunit than for the ‘native’ holoenzyme. In addition, these monoclonal antibodies show no reactivity with either the glycoprotein (β) subunit of the lamb enzyme nor the (Na+ + K+)-ATPase from rat kidney, an ouabain-insensitive organ. Cotitration binding experiments have shown that the antibodies from two cell lines originally isolated independently from the same culture plate well population of fused cells bind to the same determinant site and are probably the same antibody. Cotitration and competition binding studies with two other antibodies have revealed two additional distinct antibody binding sites which appear to have little overlap with the first site. One of the three different antibodies isolated caused a partial inhibition of the (Na+ + K+)-ATPase activity. This antibody appears to be directed against a specific functionally important site of the α-subunit and is a competitive inhibitor of ATP binding. Under optimum conditions of ATPase activity, this inhibitory effect is not altered by the presence of the other two antibodies.  相似文献   

16.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

17.
The intracellular level of Na+ and K+ of S. cerevisiae strain AB1375 revealed that under KCl as well as sorbitol stress, the cationic level was comparable to the level under no stress conditions. On the other hand, there was a sharp drop in the intracellular K+ content and increase in the Na+ content on addition of NaCl to the medium. However, the total cationic level was close to that under control conditions. In addition to changes in the cationic level, an enhanced production and accumulation of glycerol were also observed under osmotic stress. A regulatory mechanism co-ordinating the intracellular concentration of glycerol as well as Na+, K+ content under osmotic stress conditions has been proposed.  相似文献   

18.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

19.
The effect of retinol deficiency and curcumin and turmeric feeding on brain microsomal Na+-K+ ATPase activity was investigated. The brain Na+–K+ ATPase activity registered an increase of 148.5% as compared to the control group. Upon treating retinol deficient rats with curcumin or turmeric, the abnormally elevated activity showed a decrease of 36.9 and 47.1%, respectively, when compared to the retinol deficient group. An increase in Vmax by 67% and Km by 66% for ATP was observed in the retinol deficient group. Curcumin or turmeric fed retinol-deficient groups reduced the Vmax by 25 and 33%, while Km was reduced by 25 and 31%, respectively, compared to the retinol deficient group. Arrhenius plot of Na+–K+ ATPase showed a typical bi-phasic pattern in all the groups. Cholesterol: Phospholipid ratio showed a decrease in the retinol-deficient group by 67.8%, which showed a marked increase in curcumin or turmeric treated groups. Detergents could increase the Na+–K+ ATPase activity more in the control group than in the retinol deficient groups. Curcumin or turmeric improved the detergent action on the enzyme. Subsequent freezing and thawing over a period of 30 min decreased the enzyme activity by 22.8% in the retinol deficient group compared to 15.9% decrease in the control group. Curcumin or turmeric treated groups showed a decrease in the enzyme activity by 22.0 and 19.2%, respectively, when compared to the zero time in each group. In the presence of concanavalin-A (Con-A) there was only 52.4% stimulation in the enzyme activity in retinol deficient groups, compared to 108.0% in the control group. Curcumin or turmeric treated retinol-deficient groups showed a stimulation in the presence of con-A by 70 and 99.5%, respectively.  相似文献   

20.
Sporadic hemiplegic migraine type 2 (SHM2) and familial hemiplegic migraine type 2 (FHM2) are rare forms of hemiplegic migraine caused by mutations in the Na+,K+-ATPase α2 gene. Today, more than 70 different mutations have been linked to SHM2/FHM2, randomly dispersed over the gene. For many of these mutations, functional studies have not been performed. Here, we report the functional characterization of nine SHM2/FHM2 linked mutants that were produced in Spodoptera frugiperda (Sf)9 insect cells. We determined ouabain binding characteristics, apparent Na+ and K+ affinities, and maximum ATPase activity. Whereas membranes containing T345A, R834Q or R879W possessed ATPase activity significantly higher than control membranes, P796S, M829R, R834X, del 935–940 ins Ile, R937P and D999H membranes showed significant loss of ATPase activity compared to wild type enzyme. Further analysis revealed that T345A and R879W showed no changes for any of the parameters tested, whereas mutant R834Q possessed significantly decreased Na+ and increased K+ apparent affinities as well as decreased ATPase activity and ouabain binding. We hypothesize that the majority of the mutations studied here influence interdomain interactions by affecting formation of hydrogen bond networks or interference with the C-terminal ion pathway necessary for catalytic activity of Na+,K+-ATPase, resulting in decreased functionality of astrocytes at the synaptic cleft expressing these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号