首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entrainment of circannual rhythms of body mass and reproduction was monitored for 3 years in female golden-mantled ground squirrels maintained in a simulated natural photoperiod. Both pinealectomized and pineal-intact squirrels generated circannual rhythms of body mass and estrus, but only the intact animals entrained these rhythms to a period of 365 days. In the second and third years after treatment, the period of the body mass rhythm was significantly shorter than 365 days for pinealectomized squirrels, and variance in tau among these animals was significantly greater than for intact squirrels. A similar pattern was evident in the rhythm of reproduction, which was phase-disrupted in pinealectomized squirrels but entrained in intacts. Seasonal changes in duration of nocturnal melatonin secretion by the pineal appear to be necessary to produce phase-delays required to entrain the circannual clock to a period of 12 months.  相似文献   

2.
In golden-mantled ground squirrels, phase angles of entrainment of circadian locomotor activity to a fixed light-dark cycle differ markedly between subjective summer and winter. A change in ambient temperature affects entrainment only during subjective winter when it also produces pronounced effects on body temperature (Tb). It was previously proposed that variations in Tb are causally related to the circannual rhythm in circadian entrainment. To test this hypothesis, wheel-running activity and Tb were monitored for 12 to 14 months in castrated male ground squirrels housed in a 14:10 LD photocycle at 21 degrees C. Animals were treated with testosterone implants that eliminated hibernation and prevented the marked winter decline in Tb; these squirrels manifested circannual changes in circadian entrainment indistinguishable from those of untreated animals. Both groups exhibited pronounced changes in phase angle and alpha of circadian wheel-running and Tb rhythms. Seasonal variation in Tb is not necessary for circannual changes in circadian organization of golden-mantled ground squirrels.  相似文献   

3.
The frequency demultiplication hypothesis (FDH) posits that circannual rhythms are generated from circadian cycles by frequency transformation to the lower-frequency rhythm. To test the FDH, we determined the periods of the circannual body mass and estrous cycles of golden-mantled ground squirrels with circadian locomotor activity rhythms entrained to 23-, 24-, or 25-hr days (T-cycles). Circannual period length did not differ among squirrels entrained to the different T-cycles; intergroup ranges were 298-314 days and 303-312 days, respectively, for body mass and estrus. These results are not consistent with the FDH and suggest instead that separate mechanisms generate circadian and circannual rhythms. In ground squirrels the circannual system influences circadian organization, but a reciprocal influence of circadian on circannual rhythms has yet to be demonstrated.  相似文献   

4.
Female golden-mantled ground squirrels, maintained in an LD 14:10 photoperiod at 23 degrees C, sustained lesions of the paraventricular nucleus (PVN) or sham operations. Body weight and reproductive status were recorded weekly pre- and postoperatively. Bilateral lesions of the PVN did not eliminate, phase-shift, or otherwise disrupt the circannual rhythms of body mass or reproduction. Absolute levels of body weight were unaffected by PVN ablation. The PVN is not an essential component of the oscillatory system that generates circannual cycles in ground squirrels.  相似文献   

5.
1. Zeitgebers for circannual rhythms have been elusive. Demonstration that an external factor is a zeitgeber requires proof of a phase-shift that endures for several years. 2. The California ground squirrel (Spermophilus beecheyi) is an ideal subject. Many features of behavior have circannual rhythms of which change in mass is the easiest to measure. The squirrels thrive in captivity for up to 10 years. The squirrels were kept in individual cages in an air conditioned room, fed lab chow ad lib, and weighed twice a month. They were exposed to a 6-month phase shift of (a) length of day (b) seasonal change in temperature, (c) both, (d) seasonal cycle of irradiance. 3. The squirrels maintained circannual rhythms for up to 9 years. Entrainment was evident only by squirrels exposed to seasonal change in irradiance.  相似文献   

6.
Summary Endogenous circannual rhythms of male golden-mantled ground squirrels (Spermophilus lateralis) exposed to low ambient temperature (6 °C) at various times were compared to the rhythms of a control group kept in a warm room (21 °C) throughout. A 20-week pulse of cold in the spring delayed the subsequent peak body weight and molt offset. However, in the second year after the spring cold pulse, a delay in the rhythm was evident only using peak weight as a phase marker. A 20-week cold pulse in the fall resulted in an earlier peak body weight and earlier onset of pigmented scrotum and descended testes, but there was no evidence from subsequent years that rhythms had been phase advanced. A third of the animals kept continuously at 6 °C remained with pigmented scrotum, descended testes and low body weight for more than a year. Circannual periodicities of animals that continued to display rhythms in the cold room were not significantly longer than those of controls in the warm room. The results suggest that low temperature in the fall can alter the expression of circannual rhythms without much affecting their phasing, while low temperature in the spring produces phase delays which last longer but have not been proved to be persistent.Abbreviation PRC phase response curve  相似文献   

7.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

8.
In three species of birds that migrate long distances, the annual rhythms of gonadal activity, molt, and migratory restlessness (Zugunruhe) persist for more than 1 year under certain constant conditions. The most important zeitgeber for these circannual rhythms is the annual cycle of photoperiod, which adjusts the overall period of circannual rhythms to exactly 1 year and also provides for the appropriate adjustment of seasonal activities to the temporal structure of the environment. This is illustrated by results on garden warblers (Sylvia borin) indicating that the longer photoperiods experienced by individuals wintering far south in the African wintering area phase-advance spring migration and the accompanying gonadal development, relative to those of individuals wintering further north. The rate of acceleration is, however, slow enough to prevent a reproductive cycle during the Southern Hemisphere summer. Hence, endogenous circannual components and zeitgeber stimuli constitute a functional entity that provides as a whole for adaptive temporal programming. This idea is further supported by findings in the pied flycatcher (Ficedula hypoleuca), in which a circannual rhythmicity persists only if photoperiod in winter is at least as short as that normally encountered by the species in its wintering grounds slightly north of the equator. In collared flycatchers (Ficedula albicollis), in contrast, rhythmicity continues under much longer photoperiods, consistent with the fact that the wintering area of this species extends to latitudes far south of the equator. It is proposed that the adaptive function of circannual rhythms can be properly understood only if their interactions with environmental factors, particularly those that play a role as zeitgebers, are analyzed in sufficient detail. The biological significance of circannual rhythms may be more apparent in the context of the environmental constraints limiting their expression than in the often rather restricted set of conditions sustaining spontaneous annual cyclicity.  相似文献   

9.
The varied carpet beetle Anthrenus verbasci L. has a circannual pupation rhythm and pupates in the spring in the wild. The change in photoperiod acts as a predominant zeitgeber for this rhythm. However, it is unclear whether the change in ambient temperature acts as a zeitgeber. The present study examines the effects of low‐temperature pulses on this circannual rhythm by exposing larvae kept under constant short‐day conditions (LD 12 : 12 h) at 20 °C to a lower temperature of 15, 10 or 5 °C for 8 or 12 weeks at various phases. Larval development and pupation are suppressed during exposure to low temperature, with this pupation being induced in sufficiently grown larvae within 2 months of a return to 20 °C. These results are attributed to the exogenous suppression and stimulation of pupation, rather than being related to the circannual rhythm (i.e. masking of the circannual rhythm by temperature). Furthermore, long‐term observations demonstrate the existence of phase‐dependent phase shifts of circannual rhythm as a result of low‐temperature pulses. Circannual phase response curves to low temperature are constructed on the basis of the phase shifts obtained. A low‐temperature pulse as a winter signal can reset the circannual rhythm of A. verbasci. It is probable that both temperature and photoperiod play a role in the entrainment of this circannual rhythm to a natural year.  相似文献   

10.
In many birds, reproduction, molt, migration and other seasonal activities are controlled by endogenous circannual rhythmicity. Under constant conditions, this rhythm persists for many cycles with a period deviating from 12 months. Whether or not the rhythm is expressed depends on day length (photoperiod), which thus represents an important permissive factor in the process of rhythm generation. In nature, circannual rhythms are usually synchronized by the seasonal changes in photoperiod. However, equatorial birds may use daytime light intensity, which changes with the annual cycle of dry and rainy seasons, as a synchronizing zeitgeber. Photoperiod also modulates the rate of progress of the successive phases of the rhythmicity, such that an optimal adjustment to the annual environmental cycle is guaranteed. Populations of a given species may differ in their responsiveness to photoperiod in a manner that can be described as 'adaptive population-specific reaction norms'. In young migratory songbirds a circannual program determines changes in migratory direction and, at least partly, the time course and distance of migration. This circannual mechanism is replaced or supplemented in older birds by mechanisms formed on the basis of learning and memory. In general, circannual rhythms are intimately involved in the seasonal organization of a bird's behavior, providing the substrate onto which seasonal environmental factors act.  相似文献   

11.
Information on the widespread function of the suprachiasmatic (SCN) pacemaker has increased dramatically in the past decade for laboratory rodents and for humans. Interest is now also growing in the adaptive value of SCN pacemakers in wild species of free-living mammals in natural pristine habitat. The squirrel family, Sciuridae, is highly diverse in North America. Radiation into many specialized groups has evolved in response to the temporal and spatial characteristics of specific habitats. The sciurids thus offer possibilities for comparison of SCN function for closely related species from very different habitats. Results from field and laboratory investigations concerning the ecological significance of the SCN are reported here for three ground squirrel species. The semi-fossorial antelope squirrels of the American southwest deserts were arrhythmic in above ground activities after deletion of the SCN pacemaker. In a desert enclosure, predation rates rose dramatically for lesioned animals in comparison to intact controls. The semi-arborial chipmunks were prone to capture by mustelid burrow predators such as weasels after SCN-deletion, even though the chipmunks did not exhibit any above ground activity at night. The telltale cue for the predator was apparently arrhythmic restlessness within the complex home burrow. The semi-fossorial golden-mantled squirrels of the Cascade Mountains of western United States rely on profound, long-lasting hibernation for over-wintering. Periods of torpor alternate with brief euthermic arousal episodes lasting less than 24 h throughout the 5- to 8-month winter phase. Deletion of the SCN in golden-mantled squirrels resulted in aberrations of hibernation arousal patterns that were metabolically expensive and put individuals at risk of starvation immediately after emergence in spring.  相似文献   

12.
We know that entrainment, a stable phase relationship with an environmental cycle, must be established for a biological clock to function properly. Phase response curves (PRCs), which are plots of phase shifts that result as a function of the phase of a stimulus, have been created to examine the mode of entrainment. In circadian rhythms, single-light pulse PRCs have been obtained by giving a light pulse to various phases of a free-running rhythm under continuous darkness. This successfully explains the entrainment to light-dark cycles. Some organisms show circannual rhythms. In some of these, changes in photoperiod entrain the circannual rhythms. However, no single-pulse PRCs have been created. Here we show the PRC to a long-day pulse superimposed for 4 weeks over constant short days in the circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci. Because the shape of that PRC closely resembles that of the Type 0 PRC with large phase shifts in circadian rhythms, we suggest that an oscillator having a common feature in the phase response with the circadian clock, produces a circannual rhythm.  相似文献   

13.
Photoperiod is a significant modulator of behavior and physiology for many organisms. In rodents changes in photoperiod are associated with changes in circadian period and photic resetting of circadian pacemakers. Utilizing rhythms of in vivo behavior and in vitro mPer2::luc expression, we investigated whether different entrainment photoperiods [light:dark (L:D) 16:8 and L:D 8:16] alter the period or phase relationships between these rhythms and the entraining light cycle in Per2::luc C57BL/6J mice. We also tested whether mPer2::luc rhythms differs in anterior and posterior suprachiasmatic nucleus (SCN) slices. Our results demonstrate that photoperiod significantly changes the timing of the mPer2::luc peak relative to the time of light offset and the activity onset in vivo. In both L:D 8:16 and L:D 16:8 the mPer2::luc peak maintained a more stable phase relationship to activity offset, while altering the phase relationship to activity onset. After the initial cycle in culture, the period, phase, and peaks per cycle were not significantly different for anterior vs. posterior SCN slices taken from animals within one photoperiod. After short-photoperiod treatment, anterior SCN slices showed increased-amplitude Per2::luc waveforms and posterior SCN slices showed shorter-duration peak width. Finally, the SCN tissue in vitro did not demonstrate differences in period attributable to photoperiod pretreatment, indicating that period aftereffects observed in behavioral rhythms after long- and short-day photoperiods are not sustained in Per2::luc rhythms in vitro. The change in phase relationship to activity onset suggests that Per2::luc rhythms in the SCN may track activity offset rather than activity onset. The reduced amplitude rhythms following long-photoperiod treatment may represent a loss of coupling of component oscillators.  相似文献   

14.
Circulating concentrations of prolactin were monitored for 3 yr in intact ewes kept either outdoors or indoors in a fixed equatorial photoperiod (12L:12D) and restricted range of environmental temperatures. Prolactin data were analyzed by spectral analysis. In all ewes kept outdoors, concentrations of prolactin showed robust circannual rhythms with a single predominant period of 359 days. In ewes kept indoors, the range of significant periods varied from 35 to 532 days. Although all ewes kept indoors showed a significant rhythm with a period of 354 days, this clearly was not the predominant period in all. The amplitude of the rhythm in ewes kept indoors was significantly lower (p less than 0.01) than that of ewes kept outdoors. Although the annual rhythm of circulating prolactin typical of ewes kept outdoors was significantly compromised in animals kept under a constant 12L:12D photoperiod and restricted environmental temperature range, there was evidence of an endogenous circannual rhythm.  相似文献   

15.
A data set of 293 phase shifts was analyzed in order to determine the relationship between phase resetting and the free-running period (tau) in Djungarian hamsters. Phase shifts in response to a 15-min light pulse were assigned to one of two groups (tau short, less than 24 hr; tau long, greater than 24 hr), and two phase response curves (PRCs) were constructed. The two PRCs differed predominantly in the advance region, which extended so far into the subjective day of PRClong that a dead zone was lacking. The functional significance of PRC differences was assessed by computer simulations of entrainment to varying skeleton photoperiods and entrainment to a 12-hr skeleton photoperiod with varying tau's. Results from these simulations confirmed the theoretical predictions by Pittendrigh and Daan: Stability of entrainment under varying photoperiods depended on the ratio of the PRC slopes at the phases illuminated by light (SE/SM). This ratio was always larger than 1 for PRClong. It approached 0 for PRCshort as soon as the evening light illuminated the dead zone; this occurred for entrainment to very short photoperiods. Stability of entrainment to lights-off was in general better for PRClong than for PRCshort, especially if PRClong was used in combination with tau long. This suggests that it can be advantageous for stability of entrainment to lights-off to express a tau greater than 24 hr in combination with a PRC lacking a dead zone. Stability of entrainment under varying tau's was not much different for PRClong or PRCshort. However, stability of entrainment deteriorated for PRClong in combination with short tau's, whereas it deteriorated for PRCshort in combination with long tau's.  相似文献   

16.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel (Funambulus pennanti). Palm squirrels showed strongly diurnal locomotor activity rhythms (? 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

17.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel ( Funambulus pennanti ). Palm squirrels showed strongly diurnal locomotor activity rhythms (~ 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

18.
The locomotor activity of Nereis virens Sars associated with food prospecting was investigated in response to photoperiod and season using an actograph. Experimental animals which had been reared under natural photoperiods were exposed to two constant photoperiodic treatments, LD 16:8 and LD 8:16, in both the autumn and winter and in the absence of tidal entrainment. Autocorrelation analysis of rhythmicity showed that during the autumn, animals under the LD 16:8 photoperiod displayed a strong nocturnal rhythm of activity, whereas animals under the LD 8:16 photoperiod showed only a weak nocturnal activity rhythm. This is believed to represent an autumn feeding cessation that is triggered when the animals pass through a critical photoperiod LD(crit) <12:>12. Later in the winter, however, animals exposed to both photoperiodic treatments showed strong rhythms of foraging activity irrespective of the imposed photoperiod. It is suggested that the autumn cessation may maximize the fitness of N. virens, a spring-breeding semelparous organism, by reducing risk during gamete maturation, while spontaneous resurgence of activity after the winter solstice permits animals that are not physiologically competent to spawn to accrue further metabolic reserves. This response is believed to be initiated by a seasonal (possibly circannual) endogenous oscillator or interval timer.  相似文献   

19.
Summary

Suprachiasmatic nucleus (SCN)‐lesioned rats which had received a fetal SCN graft were kept in constant red light for three months. After this period it was examined whether those rats that showed a recovered free‐running circadian rhythm could be entrained to light/dark cycles. To this end, they were subjected to a 12 h light/12 h dark schedule, followed by a 12 h light shift and again to dark conditions. In addition, the same regime was imposed on SCN‐grafted rats without recovered circadian rhythms and on sham‐grafted animals with a lesion, which were studied as controls. The presence of an SCN graft was identified immunocytochemically by the presence of vasopressin, vasoactive intestinal polypeptide and somatostatin cells.

Drinking, eating and wheel‐running rhythms were found to synchronize to the light/dark cycles in all rats, not with standing the presence of an SCN graft was. A 12 h light shift was immediately followed by a shift in the three rhythms. Under final dark conditions, free‐running patterns reappeared in rhythm‐recovered animals, without any convincing evidence for entrainment of the rhythms in the pattern of transition.

Behavioral rhythms in SCN‐lesioned rats are apparently masked by 12 h light/dark schedules via other visual pathways than the direct projection from the retina to the SCN.  相似文献   

20.
1. The concentrations of total cholesterol (free cholesterol plus cholesteryl ester) in the sera and in two lipoprotein fractions of golden-mantled ground squirrels (Spermophilus lateralis) were measured and compared to those found in humans and New Zealand White rabbits (Oryctolagus cuniculus). 2. Squirrels showed significantly higher concentrations of total serum cholesterol (TSC; P less than 0.0005), high density lipoprotein cholesterol (HDL-C; P less than 0.0005), and very low density plus low density lipoprotein cholesterol (VLDL + LDL-C; P less than 0.0005) than those in rabbits. 3. Squirrels had significantly higher TSC (P less than 0.0005) and HDL-C (P less than 0.0005) concentrations than did humans. 4. Squirrels additionally exhibited significantly lower TSC/HDL-C ratios than did rabbits (P less than 0.005) or humans (P less than 0.0005). 5. The significant differences in lipoprotein metabolism observed in this study between the active hibernator and non-hibernators, may reflect the marked biochemical and physiological adjustments hibernating species make throughout their circannual cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号