首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether contractility of bronchial smooth muscle cells (BSMC) from asthmatic subjects is significantly altered has never been validated. We tested the hypothesis that such BSMC show increased contractility. Cells were isolated from endobronchial biopsies. BSMC shortening was measured under an inverted microscope. Statistically significant increases in maximum shortening capacity (Delta L max) and velocity (Vo) were found in asthmatic BSMC compared with normal cells. Mean Delta L max in asthmatic BSMC was 39.05 +/- 1.99% (SE) of resting cell length compared with 28.6 +/- 1.1% in normal cells; mean Vo was 7.2 +/- 0.8% of resting cell length/s in asthmatic cells and 5.23 +/- 0.46% in normal cells. To investigate the mechanism of the increased contractility, we measured mRNA abundance of smooth muscle types of myosin light chain kinase (smMLCK) and myosin heavy chain. RT-PCR data revealed that smMLCK mRNA was higher in asthmatic BSMC (0.106 +/- 0.021 arbitrary densitometric units, n = 7) than in control cells (0.04 +/- 0.008, n = 11; P < 0.05). Messages for myosin heavy chain isoforms showed no difference. Increased kinase message content is an index of the mechanism for the increased velocity and capacity of shortening we report.  相似文献   

2.

Background

Airway wall remodelling is a key pathology of asthma. It includes thickening of the airway wall, hypertrophy and hyperplasia of bronchial smooth muscle cells (BSMC), as well as an increased vascularity of the sub-epithelial cell layer. BSMC are known to be the effector cells of bronchoconstriction, but they are increasingly recognized as an important source of inflammatory mediators and angiogenic factors.

Objective

To compare the angiogenic potential of BSMC of asthmatic and non-asthmatic patients and to identify asthma-specific angiogenic factors.

Methods

Primary BSMC were isolated from human airway tissue of asthmatic and non-asthmatic patients. Conditioned medium (CM) collected from BSMC isolates was tested for angiogenic capacity using the endothelial cell (EC)-spheroid in vitro angiogenesis assay. Angiogenic factors in CM were quantified using a human angiogenesis antibody array and enzyme linked immunosorbent assay.

Results

Induction of sprout outgrowth from EC-spheroids by CM of BSMC obtained from asthma patients was increased compared with CM of control BSMC (twofold, p < 0.001). Levels of ENA-78, GRO-α and IL-8 were significantly elevated in CM of BSMC from asthma patients (p < 0.05 vs. non-asthmatic patients). SB 265610, a competitive antagonist of chemokine (CXC-motif) receptor 2 (CXCR2), attenuated the increased sprout outgrowth induced by CM of asthma patient-derived BSMC.

Conclusions

BSMC isolated from asthma patients exhibit increased angiogenic potential. This effect is mediated through the CXCR2 ligands (ENA78, GRO-α and IL-8) produced by BSMC.

Implications

CXCR2 ligands may play a decisive role in directing the neovascularization in the sub-epithelial cell layers of the lungs of asthma patients. Counteracting the CXCR2-mediated neovascularization by pharmaceutical compounds may represent a novel strategy to reduce airway remodelling in asthma.  相似文献   

3.

Background:

Recently, reports have indicated a role for the membrane form of Toll-like Receptor 2 (TLR2) in asthma pathogenesis. In this study we examined soluble TLR2 levels in serum and sputum of asthmatic and healthy subjects.

Methods:

Serum and sputum samples were obtained from 33 asthmatic and 19 healthy subjects. The asthmatics were classified into four groups according to the Global Initiative for Asthma. A sandwich ELISA was developed to measure soluble TLR2 (sTLR2) in serum and sputum. TLR2 mRNA expression was determined by semi-quantitative RT-PCR of all sputum samples.

Results:

The mean sTLR2 levels from serum and sputum of asthmatics were significantly lower than those from healthy subjects. Moreover, sTLR2 concentration decreased concomitantly with asthma severity. The differences observed, however, were not statistically significant. TLR2/GAPDH mRNA of sputum leukocytes was also significantly lower in asthmatics than in healthy subjects.

Conclusion:

This study demonstrated for the first time thatsTLR2 levels are lower in serum and sputum samples from asthmatic than from healthy subjects, and this could be an indicator of TLR2 expression. We also found that sTLR2 concentration in serum decreased concomitantly with an increase of asthma severity clinical score. Key Words: Asthma, Expression, TLR2 mRNA, Soluble Toll-like receptor  相似文献   

4.
The role of different subpopulations of bronchial macrophages (BMs) in asthma pathogenesis has not yet been completely elucidated. In addition, little is known about potential in vivo responsiveness of BMs to pro- and anti-inflam-matory cytokines present in the bronchial milieu. We aimed to characterize asthmatic patients' BM subpopulations delineated by common markers of macrophage/monocyte cells, CD16 and CD14, and subsequently to analyze cytokine receptor expression on those subsets. Subjects included eighteen patients with moderate asthma (six steroid-naive and twelve steroid-treated) and ten healthy control subjects. Flow cytometry was used to analyze phenotypical features of BMs including expression of receptors for IL-10, IL-4 and IL-7. Exhaled nitric oxide analysis and induced sputum eosinophil counts were used to assess airway inflammation. BMs from both steroid-naive and steroid-treated asthmatic patients showed significantly decreased expression of CD16, as compared to healthy subjects' BMs. CD16, but not CD14, expression inversely correlated with exhaled nitric oxide levels and sputum eosinophilia. Short-term administration of inhaled cortiocosteroids (ICS) in steroid-naive asthmatic patients led to significant reduction of CD16 expression and enhancement of CD14 expression. Next, we analyzed the expression of receptors for IL-10, IL-4 and IL-7 on the surface of BM subpopulations characterized by different levels of CD14 and CD16 expression. We observed substantial levels of IL-10R on the surface of BMs collected from asthmatic and healthy subjects. Interestingly, IL-10R was found mostly on those macrophages that co-expressed CD14. In contrast, independently on co-expression of CD14, the levels of IL-4R and IL-7R on BMs were low in both asthmatic and healthy subjects. The results suggest that different BM subsets may be differentially involved in regulating the inflammatory response in allergic asthma.  相似文献   

5.
Peng H  Chen P  Cai Y  Chen Y  Wu QH  Li Y  Zhou R  Fang X 《Peptides》2008,29(3):419-424
Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.  相似文献   

6.
Role of capacitative Ca2+ entry in bronchial contraction and remodeling.   总被引:4,自引:0,他引:4  
Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+ in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents (I(SOC)) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+ channels by Ni2+ decreased I(SOC) and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I(SOC), enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.  相似文献   

7.
8.
Molecular markers in bronchial fluids may contribute to the diagnosis of lung cancer. We previously observed a significant increase of C4d-containing complement degradation fragments in bronchoalveolar lavage (BAL) supernatants from lung cancer patients in a cohort of 50 cases and 22 controls (CUN cohort). The present study was designed to determine the diagnostic performance of these complement fragments (hereinafter jointly referred as C4d) in bronchial fluids. C4d levels were determined in BAL supernatants from two independent cohorts: the CU cohort (25 cases and 26 controls) and the HUVR cohort (60 cases and 98 controls). A series of spontaneous sputum samples from 68 patients with lung cancer and 10 controls was also used (LCCCIO cohort). Total protein content, complement C4, complement C5a, and CYFRA 21-1 were also measured in all cohorts. C4d levels were significantly increased in BAL samples from lung cancer patients. The area under the ROC curve was 0.82 (95%CI = 0.71–0.94) and 0.67 (95%CI = 0.58–0.76) for the CU and HUVR cohorts, respectively. In addition, unlike the other markers, C4d levels in BAL samples were highly consistent across the CUN, CU and HUVR cohorts. Interestingly, C4d test markedly increased the sensitivity of bronchoscopy in the two cohorts in which cytological data were available (CUN and HUVR cohorts). Finally, in the LCCCIO cohort, C4d levels were higher in sputum supernatants from patients with lung cancer (area under the ROC curve: 0.7; 95%CI = 0.56–0.83). In conclusion, C4d is consistently elevated in bronchial fluids from lung cancer patients and may be used to improve the diagnosis of the disease.  相似文献   

9.
Smoking may modify the inflammatory pattern of the asthmatic airways. Osteopontin (OPN) has been associated with inflammation and fibrosis. In asthma, sputum levels of OPN are elevated and have been related to the underlying severity and to mediators expressing remodeling and inflammation.To evaluate the levels of OPN in sputum supernatants of asthmatic patients and to investigate the possible role of smoking as well as associations with mediators and cells involved in the inflammatory and remodeling process.We studied 103 asthma patients (49 smokers) and 40 healthy subjects (20 smokers) who underwent lung function tests, bronchial hyperresponsiveness to methacholine, and sputum induction for cell count identification and measurement of OPN, TGF-β1, IL-8, IL-13 and ECP in sputum supernatants. The concentrations of all mediators were measured using enzyme immunoassays.OPN levels (pg/ml) were significantly higher in smoking asthmatics compared to non-smoking asthmatics, and both non-smoking and smoking controls [median (interquartile ranges) 1120 (651, 1817) vs. 197 (118, 341) vs. 50 (42, 70) vs. 102 (77, 110) pg/ml, respectively; p < 0.001]. Regression analysis provided significant associations between OPN and sputum neutrophils, IL-8 and TGF-β1, the most significant being the one with TGF-β1. These associations were present only in smoking asthmatics.Smoking habit significantly affects sputum OPN levels in asthma. The associations of OPN with sputum neutrophils, TGF-β1 and IL-8 in smoking asthmatics suggest a possible role for OPN in the neutrophilic inflammation and remodeling process in this phenotype of asthma.  相似文献   

10.
Chronic cough lasting 8 weeks or more often seems to be an intractable problem in childhood. Toxocara infection is associated with an increased prevalence of airway symptoms and may be the possible aetiological agent of chronic cough. Of 425 children aged 2-17 years with chronic cough who were investigated for toxocariasis and the distribution of bronchial asthma (BA), cough variant asthma (CVA) and non-asthmatic eosinophilic bronchitis (NAEB), 136 (32%) were seropositive for Toxocara canis antigens. Ninety-three of the 136 were adequately assessed, diagnosed and followed up during 1 year. BA was diagnosed in 40%, CVA in 27% and NAEB in 33% of the children. The eosinophil cell count, serum T. canis IgG levels and symptoms are predictors of the improvement or the decline of the condition. Presuming the aetiopathogenetic role of T. canis in the inflammatory process of chronic cough, we treated the children not only with inhaled corticosteroid (ICS), but also with a 1-week course of anthelminthics. We could significantly decrease the dose of ICS in 23 (62%) of the 37 with BA. The administration of anthelminthics and the avoidance of sensitizers were sufficient for those with NAEB; none needed ICS. ICS therapy could be stopped 2-3 months later in 17 (68%) of the 25 with CVA. We found that 8 of the 25 with CVA (32%) presented asthmatic symptoms at the end of the 1-year period. In Hungary, T. canis may be a potential sensitizer for chronic cough in seropositive children. Deworming therapy will then alleviate the airway symptoms without exacerbation in patients with BA, and have a positive effect on those with NAEB and the majority of those with CVA.  相似文献   

11.
Although PGE(2) is a potent inhibitor of fibroblast function, PGE(2) levels are paradoxically elevated in murine lungs undergoing fibrotic responses. Pulmonary fibroblasts from untreated mice expressed all four E prostanoid (EP) receptors for PGE(2). However, following challenge with the fibrogenic agent, bleomycin, fibroblasts showed loss of EP2 expression. Lack of EP2 expression correlated with an inability of fibroblasts from bleomycin-treated mice to be inhibited by PGE(2) in assays of proliferation or collagen synthesis and blunted cAMP elevations in response to PGE(2). PGE(2) was similarly unable to suppress proliferation or collagen synthesis in fibroblasts from EP2(-/-) mice despite expression of the other EP receptors. EP2(-/-), but not EP1(-/-) or EP3(-/-) mice, showed exaggerated fibrotic responses to bleomycin administration in vivo as compared with wild-type controls. EP2 loss on fibroblasts was verified in a second model of pulmonary fibrosis using FITC. Our results for the first time link EP2 receptor loss on fibroblasts following fibrotic lung injury to altered suppression by PGE(2) and thus identify a novel fibrogenic mechanism.  相似文献   

12.
Thromboxane A2 receptor (TP) mediates bronchial smooth muscle cell (BSMC) contraction, airway hyperresponsiveness, and airway inflammation in patients with asthma. In the present study, a pathogenic role of TP activation in airway remodeling was examined using primary cultures of human BSMC. A TP agonist, I-BOP, concentration-dependently enhanced not only bromodeoxyuridine (BrdU) uptake but also cell proliferation of BSMC. A TP-selective antagonist, AA-2414, blocked the effects of I-BOP on both BrdU uptake and cell proliferation. I-BOP-induced BrdU uptake was significantly blocked by two non-selective tyrosine kinase inhibitors, genistein and herbimycin A, or a Src family tyrosine kinase inhibitor, PP2, but not by an inhibitor of epidermal growth factor (EGF) receptor-associated tyrosine kinase, AG1478. In conclusion, TP receptor activation causes DNA synthesis and cell proliferation of human BSMC by activating tyrosine kinases including Src, but not by EGF receptor transactivation.  相似文献   

13.
Our studies target alternative/adjuvant therapies in allergic diseases, able to qualitatively/quantitatively modify cytokine profiles produced by both CD4+ T-cell subsets (mainly Th1 and Th2) and B-cells, macrophages, etc. Current investigations aim to identify compounds capable to down-regulate IL-10 as an exponent of Th2 cell function and, consequently, to up-regulate Th1 cytokine levels. Experiments on ten allergic asthmatic patients and ten healthy subjects as control were performed. Cytokine production, triggered in PBMCs culture systems by PHA, was modulated with Indomethacin, a non-steroidal anti-inflammatory drug and IL-10 was measured in 24 hours culture supernatants. According to our experimental data, IL-10 level of asthmatic patients' PBMCs in the resting state is not significantly different from control. PHA-activated PBMCs from asthmatic patients do not display significantly higher IL-10 levels than the normal subjects. The results obtained up-to-date reveal the fact that Indomethacin strongly down-regulates IL-10 levels in PBMCs cultures, in both asthmatic allergic patients and healthy subjects. It is obvious that the inhibitory effect of Indomethacin on IL-10 released by PBMCs is higher in the case of allergic asthmatic patients. The results obtained in this study demonstrate that Indomethacin is a possible therapeutic candidate in allergic asthma.  相似文献   

14.
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E(2) (PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE(2) in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.  相似文献   

15.

Background

Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family and a cytokine with diverse biologic roles. OPN undergoes extensive post-translational modifications, including polymerization and proteolytic fragmentation, which alters its biologic activity. Recent studies suggest that OPN may contribute to the pathogenesis of asthma.

Methodology

To determine whether secreted OPN (sOPN) is polymerized in human airways and whether it is qualitatively different in asthma, we used immunoblotting to examine sOPN in bronchoalveolar lavage (BAL) fluid samples from 12 healthy and 21 asthmatic subjects (and in sputum samples from 27 healthy and 21 asthmatic subjects). All asthmatic subjects had mild to moderate asthma and abstained from corticosteroids during the study. Furthermore, we examined the relationship between airway sOPN and cellular inflammation.

Principal Findings

We found that sOPN in BAL fluid and sputum exists in polymeric, monomeric, and cleaved forms, with most of it in polymeric form. Compared to healthy subjects, asthmatic subjects had proportionately less polymeric sOPN and more monomeric and cleaved sOPN. Polymeric sOPN in BAL fluid was associated with increased alveolar macrophage counts in airways in all subjects.

Conclusions

These results suggest that sOPN in human airways (1) undergoes extensive post-translational modification by polymerization and proteolytic fragmentation, (2) is more fragmented and less polymerized in subjects with mild to moderate asthma, and (3) may contribute to recruitment or survival of alveolar macrophages.  相似文献   

16.
The aim of the present study was to compare, during the pollen season, serum levels of total IgE and soluble CD23 (sCD23) from patients with allergic bronchial asthma, with those from healthy subjects. Significantly higher levels of total IgE and sCD23 were found in patients with asthma compared to the control group. Both in normal controls and in asthmatic patients, a significant correlation was shown between the levels of these two molecules. In asthmatic patients, significant correlations were found for both total IgE and sCD23, with lung function measured as bronchial responsiveness to inhaled methacholine. These results suggest that in asthmatic patients, in addition to the study of total serum IgE levels, the assessment of sCD23 serum levels may be helpful in the evaluation of disease activity.  相似文献   

17.
BackgroundThe inflammatory processes in the upper and lower airways in allergic rhinitis and asthma are similar. Induced sputum and nasal lavage fluid provide a non-invasive way to examine proteins involved in airway inflammation in these conditions.ObjectivesWe conducted proteomic analyses of sputum and nasal lavage fluid samples to reveal differences in protein abundances and compositions between the asthma and rhinitis patients and to investigate potential underlying mechanisms.MethodsInduced sputum and nasal lavage fluid samples were collected from 172 subjects with 1) allergic rhinitis, 2) asthma combined with allergic rhinitis, 3) nonallergic rhinitis and 4) healthy controls. Proteome changes in 21 sputum samples were analysed with two-dimensional difference gel electrophoresis (2D-DIGE), and the found differentially regulated proteins identified with mass spectrometry. Immunological validation of identified proteins in the sputum and nasal lavage fluid samples was performed with Western blot and ELISA.ResultsAltogether 31 different proteins were identified in the sputum proteome analysis, most of these were found also in the nasal lavage fluid. Fatty acid binding protein 5 (FABP5) was up-regulated in the sputum of asthmatics. Immunological validation in the whole study population confirmed the higher abundance levels of FABP5 in asthmatic subjects in both the sputum and nasal lavage fluid samples. In addition, the vascular endothelial growth factor (VEGF) level was increased in the nasal lavage fluid of asthmatics and there were positive correlations between FABP5 and VEGF levels (r=0.660, p<0.001) and concentrations of FABP5 and cysteinyl leukotriene (CysLT) (r=0.535, p<0.001) in the nasal lavage fluid.ConclusionsFABP5 may contribute to the airway remodeling and inflammation in asthma by fine-tuning the levels of CysLTs, which induce VEGF production.  相似文献   

18.
We determined the dose-response curves to inhaled methacholine (MCh) in 16 asthmatic and 8 healthy subjects with prohibition of deep inhalations (DIs) and with 5 DIs taken after each MCh dose. Flow was measured on partial expiratory flow-volume curves at an absolute lung volume (plethysmographically determined) equal to 25% of control forced vital capacity (FVC). Airway inflammation was assessed in asthmatic subjects by analysis of induced sputum. Even when DIs were prohibited, the dose of MCh causing a 50% decrease in forced partial flow at 25% of control FVC (PD(50)MCh) was lower in asthmatic than in healthy subjects (P < 0.0001). In healthy but not in asthmatic subjects, repeated DIs significantly decreased the maximum response to MCh [from 90 +/- 4 to 62 +/- 8 (SD) % of control, P < 0.001], increased PD(50)MCh (P < 0.005), without affecting the dose causing 50% of maximal response. In asthmatic subjects, neither PD(50)MCh when DIs were prohibited nor changes in PD(50)MCh induced by DIs were significantly correlated with inflammatory cell numbers or percentages in sputum. We conclude that 1) even when DIs are prohibited, the responsiveness to MCh is greater in asthmatic than in healthy subjects; 2) repeated DIs reduce airway responsiveness in healthy but not in asthmatic subjects; and 3) neither airway hyperresponsiveness nor the inability of DIs to relax constricted airways in asthmatic subjects is related to the presence of inflammatory cells in the airways.  相似文献   

19.
The T cell-driven airway inflammation in chronic asthma is uninhibited and sustained. We examined the resistance of T cells from asthmatic patients against suppression by TGF-β, IL-10 and glucocorticoids and explored its signaling mechanism. CD4(+)CD25(-) T cells from allergic asthmatic subjects demonstrated increased TCR-stimulated proliferation as compared with healthy and chronic obstructive pulmonary disease controls. This proliferation was resistant to inhibition by TGF-β, IL-10, and dexamethasone and to anergy induction. CD4 T cells from asthmatic patients, but not chronic obstructive pulmonary disease, allergic rhinitis, and healthy subjects, showed increased expression of MEK1, heightened phosphorylation of ERK1/2, and increased levels of c-Fos. IL-2 and IL-4 stimulated the expression of MEK1 and c-Fos and induced T cell resistance. The inhibition of MEK1 reversed, whereas induced expression of c-Fos and JunB promoted T cell resistance against TGF-β- and IL-10-mediated suppression. We have uncovered an IL-2- and IL-4-driven MEK1 induction mechanism that results in heightened ERK1/2 activation in asthmatic T cells and make them resistant to certain inhibitory mechanisms.  相似文献   

20.
Pathological features of chronic obstructive pulmonary disease (COPD) include lung vascular remodeling and angiogenesis. Angiopoietin-1 (Ang-1), is an essential mediator of angiogenesis by establishing vascular integrity, whereas angiopoietin-2 (Ang-2) acts as its natural inhibitor. We determined the levels of angiopoietins in sputum supernatants of patients with COPD and investigated their possible association with mediators and cells involved in the inflammatory and remodeling process. Fifty-nine patients with COPD, 25 healthy smokers and 20 healthy non-smokers were studied. All subjects underwent lung function tests, sputum induction for cell count identification and Ang-1, Ang-2, VEGF, TGF-β1, MMP-2, LTB4, IL-8, albumin measurement in sputum supernatants. Airway vascular permeability (AVP) index was also assessed. Ang-2 levels were significantly higher in patients with COPD compared to healthy smokers and healthy non-smokers [median, interquartile ranges pg/ml, 267 (147-367) vs. 112 (67-171) and 98 (95-107), respectively; p<0.001]. Regression analysis showed a significant association between Ang-2 levels and AVP index, VEGF, IL-8 and MMP-2 levels in COPD, the strongest being with VEGF. Our results indicate that induced sputum Ang-2 levels are higher in COPD compared to healthy smokers and healthy non-smokers. Moreover, Ang-2 is associated with AVP, IL-8, MMP-2, and VEGF, indicating a possible role for Ang-2 in the pathogenesis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号