首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The animal gut commonly contains a large reservoir of symbiotic microbes. Although these microbes have obvious functions in digestion and immune defence, gut microbes can also affect behaviour. Here, we explore whether gut microbiota has a role in kin recognition. We assessed whether relatedness, familiarity and food eaten during development altered copulation investment in three species of Drosophila with diverse ecologies. We found that a monandrous species exhibited true kin recognition, whereas familiarity determined kin recognition in a species living in dense aggregations. Finally, in a food generalist species, food eaten during development masked kin recognition. The effect of food type on copulation duration, in addition to the removal of this effect via antibiotic treatment, suggests the influence of bacteria associated with the gut. Our results provide the first evidence that varied ecologically determined mechanisms of kin recognition occur in Drosophila, and that gut bacteria are likely to have a key role in these mechanisms.  相似文献   

2.
Pedigree relatedness, not greenbeard genes, explains eusociality   总被引:1,自引:0,他引:1  
The evolution of eusociality, where some individuals altruistically forgo reproduction, poses a dilemma which can be solved by kin selection, i.e. by considering relatedness among cooperating individuals. Most often, such relatedness is caused by pedigree relationships between family members. However, an alternative explanation has recently emerged in an article by Wilson and Hölldobler (2005) . Wilson and Hölldobler see the ecological benefit of group living as the principal reason for sociality. In their scenario, individuals sharing the same altruistic allele (analogous to a greenbeard gene) preferentially interact with each other, regardless of pedigree relatedness. We argue that empirical evidence has the potential to answer the question of whether pedigree relatedness plays a role in the evolution of eusociality. We conclude that both phylogenetic studies and studies of intra-genomic conflict support the importance of pedigree relatedness in the evolution of eusociality.  相似文献   

3.
Advanced eusociality, kin selection and male haploidy   总被引:1,自引:0,他引:1  
Abstract  The generation-long primacy of kin selection in explaining the evolution of advanced eusociality in social insects has been challenged in recent papers. Does this challenge succeed? I consider three questions: is kin selection still the unchallengeable explanation for the evolution of eusociality; is the male haploidy of Hymenoptera important in this explanation; and, a subsidiary question of why are there no male workers in Hymenoptera? I briefly trace the origins of kin selection back to Darwin and then consider the explanations of mutualism, group selection, parental manipulation, and kin selection and its variant 'green beard' alleles. I stress that in the kin selection equation, however written, relatedness is deeply intertwined with ecology so that both are essential. Kin selection does remain unchallengeable but, for some, the role of male haploidy has lost favour recently despite several modelling efforts all finding that it favours the evolution of eusociality. Sex allocation is deep at the heart of the evolution of hymenopteran advanced eusociality, indicating the interacting roles of population genetics and general biology. Modellers have also found no reason for a lack of male workers, so that a biological superiority of females for this role is indicated for social Hymenoptera.  相似文献   

4.
In the hymenopterans, haplodiploidy, leading to high-genetic relatedness amongst full sisters has been regarded as critical to kin selection and inclusive fitness hypotheses that explain the evolution of eusociality and altruistic behaviours. Recent evidence for independent origins of eusociality in phylogenetically diverse taxa has led to the controversy regarding the general importance of relatedness to eusociality and its evolution. Here, we developed a highly polymorphic microsatellite marker to test whether the eusocial ambrosia beetle Austroplatypus incompertus (Schedl) is haplodiploid or diplodiploid. We found that both males and females of A. incompertus are diploid, signifying that altruistic behaviour resulting from relatedness asymmetries did not play a role in the evolution of eusocialty in this species. This provides additional evidence against the haplodiploidy hypothesis and implicates alternative hypotheses for the evolution of eusociality.  相似文献   

5.
The evolution of eusociality through kin selection was analyzed by simple population genetical models. Models were solved analytically with no approximation. The main results are
  1. Sex ratio in reproductives in a colony of haplodiploid species does not affect the direction of evolution, contrary to the hypothesis ofTrivers andHare (1976). Female biased sex ratio increases the rate of evolution irrespective of its direction.
  2. The only factor that determines the direction of evolution is the balance of benefit and cost of altruism of workers.
  3. The value of ratio of benefit to cost of altruism of workers when the change of gene frequency of altruistic allele does not take place is unity in both haplodiploid and diploid species. There is no theoretical reason that the eusociality through kin selection evolves more easily in haplodiploidy than in diploidy, contrary to the hypotheses ofHamilton (1964) andTrivers andHare (1976).
  4. The larger the colony size is, the lower the rate of evolution is irrespective of its direction.
It was concluded that discussion on the evolution of altruism which depended on only the values of the degrees of relatedness is misleading. The importance of life history structure, oviposition of workers and number of relating gene(s) in the evolution of eusociality were discussed.  相似文献   

6.
Eusocial societies are traditionally characterized by a reproductivedivision of labor, an overlap of generations, and cooperativecare of the breeders' young. Eusociality was once thought tooccur only in termites, ants, and some bee and wasp species,but striking evolutionary convergences have recently becomeapparent between the societies of these insects and those ofcooperatively breeding birds and mammals. These parallels haveblurred distinctions between cooperative breeding and eusociality,leading to calls for either drastically restricting or expandingusage of these terms. We favor the latter approach. Cooperativebreeding and eusociality are not discrete phenomena, but ratherform a continuum of fundamentally similar social systems whosemain differences lie in the distribution of lifetime reproductivesuccess among group members. Therefore we propose to array vertebrateand invertebrate cooperative breeders along a common axis, representinga standardized measure of reproductive variance, and to dropsuch (loaded) terms as "primitive" and "advanced" eusociality.The terminology we propose unites all occurrences of alloparentalhelping of kin under a single theoretical umbrella (e.g., Hamilton'srule). Thus, cooperatively breeding vertebrates can be regardedas eusocial, just as eusocial invertebrates are cooperativebreeders. We believe this integrated approach will foster potentiallyrevealing cross-taxon comparisons, which are essential to understandingsocial evolution in birds, mammals, and insects.  相似文献   

7.
Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge‐dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non‐eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality.  相似文献   

8.
Rehan SM  Leys R  Schwarz MP 《PloS one》2012,7(4):e34690
The origin of sterile worker castes, resulting in eusociality, represents one of the major evolutionary transitions in the history of life. Understanding how eusociality has evolved is therefore an important issue for understanding life on earth. Here we show that in the large bee subfamily Xylocopinae, a simple form of sociality was present in the ancestral lineage and there have been at least four reversions to purely solitary nesting. The ancestral form of sociality did not involve morphological worker castes and maximum colony sizes were very small. True worker castes, entailing a life-time commitment to non-reproductive roles, have evolved only twice, and only one of these resulted in discrete queen-worker morphologies. Our results indicate extremely high barriers to the evolution of eusociality. Its origins are likely to have required very unusual life-history and ecological circumstances, rather than the amount of time that selection can operate on more simple forms of sociality.  相似文献   

9.
In a recent article E.O. Wilson and B. H?lldobler (2005) describe an heuristic model for the evolution of eusociality. They present their model as an alternative to the standard model of kin selection, and describe the evolution of eusociality in terms of changes in frequency to an hypothetical eusocial allele. Here I build on sentiments of Foster et al. (2006) to suggest that the proposed model is not a clear alternative to the standard model, but appears to represent a special case of kin selection involving preferential interactions among individuals sharing the same altruistic gene. The model proposed by Wilson and H?lldobler is consistent with the ‘greenbeard’ model of kin selection, first proposed by W.D. Hamilton. Received 23 May 2006; revised 27 June 2006; accepted 5 July 2006.  相似文献   

10.
Evolution of cooperation and group living in spiders from subsocial family groups may be constrained by their cannibalistic nature. A tendency to avoid cannibalizing kin may facilitate tolerance among spiders and implies the ability to identify relatives. We investigated whether the subsocial spider Stegodyphus lineatus discriminates kin by recording cannibalism among juveniles in experiments during which amount of food and size difference among spiders in groups were varied. We hypothesized that family groups should be less cannibalistic than groups of mixed‐parental origin. Further, we tested whether food‐stress would influence cannibalism rates differently in kin and nonkin groups and the effect of relatedness on cannibalism within groups of spiders of variable size compared with those of homogenous size. In groups of six spiders, more spiders were cannibalized in nonsib groups than in sib groups under low food conditions. A tendency for nonkin biased cannibalism in starved spider pairs supported that kin recognition in S. lineatus is expressed when food is limited. Size variance of individuals within well‐fed groups of siblings and unrelated spiders had no influence on cannibalism rates. Apparently, both hunger and high density are important promoters of cannibalism. In addition to inclusive fitness benefits, we suggest that an ability to avoid cannibalizing kin will favour the evolution of cooperation and group living in phylogenetically pre‐adapted solitary species.  相似文献   

11.
The evolution of sterile worker castes in eusocial insects was a major problem in evolutionary theory until Hamilton developed a method called inclusive fitness. He used it to show that sterile castes could evolve via kin selection, in which a gene for altruistic sterility is favored when the altruism sufficiently benefits relatives carrying the gene. Inclusive fitness theory is well supported empirically and has been applied to many other areas, but a recent paper argued that the general method of inclusive fitness was wrong and advocated an alternative population genetic method. The claim of these authors was bolstered by a new model of the evolution of eusociality with novel conclusions that appeared to overturn some major results from inclusive fitness. Here we report an expanded examination of this kind of model for the evolution of eusociality and show that all three of its apparently novel conclusions are essentially false. Contrary to their claims, genetic relatedness is important and causal, workers are agents that can evolve to be in conflict with the queen, and eusociality is not so difficult to evolve. The misleading conclusions all resulted not from incorrect math but from overgeneralizing from narrow assumptions or parameter values. For example, all of their models implicitly assumed high relatedness, but modifying the model to allow lower relatedness shows that relatedness is essential and causal in the evolution of eusociality. Their modeling strategy, properly applied, actually confirms major insights of inclusive fitness studies of kin selection. This broad agreement of different models shows that social evolution theory, rather than being in turmoil, is supported by multiple theoretical approaches. It also suggests that extensive prior work using inclusive fitness, from microbial interactions to human evolution, should be considered robust unless shown otherwise.  相似文献   

12.
We discuss the evolutionary origin and elaboration of sociality using an indirect genetic effects perspective. Indirect genetic effects models simultaneously consider zygotic genes, genes expressed in social partners (especially mothers and siblings), and the interactions between them. Incorporation of these diverse genetic effects should lead to more realistic models of social evolution. We first review haplodiploidy as a factor that promotes the evolution of eusociality. Social insect biologists have doubted the importance of relatedness asymmetry caused by haplodiploidy and focused on other predisposing factors such as maternal care. However; indirect effects theory shows that maternal care evolves more readily in haplodiploids, especially with inbreeding and despite multiple mating. Because extended maternal care is believed to be a precondition for the evolution of eusociality, the evolutionary bias towards maternal care in haplodiploids may result in a further bias towards eusociality in these groups. Next, we compare kin selection and parental manipulation and then briefly review additional hypotheses for the evolutionary origin of eusociality. We present a verbal model for the evolutionary origin and elaboration of sib-social care from maternal care based on the modification of the timing of expression of maternal care behaviors. Specifically, heterochrony genes cause maternal care behaviors to be expressed prereproductively towards siblings instead of postreproductively towards offspring. Our review demonstrates that both maternal effect genes (expressed in a parental manipulation manner) and direct effect zygotic genes (expressed in an offspring control manner) are likely involved in the evolution of eusociality. We conclude by describing theoretical and empirical advances with indirect genetic effects and sociogenomics, and we provide specific quantitative genetic and genomic predictions from our heterochrony model for the evolutionary origin and elaboration of eusociality.  相似文献   

13.
Bodil K. Ehlers  Trine Bilde 《Oikos》2019,128(6):765-774
The findings that some plants alter their competitive phenotype in response to genetic relatedness of its conspecific neighbour (and presumed competitor) has spurred an increasing interest in plant kin‐interactions. This phenotypic response suggests the ability to assess the genetic relatedness of conspecific competitors, proposing kin selection as a process that can influence plant competitive interactions. Kin selection can favour restrained competitive growth towards kin, if the fitness loss from reducing own growth is compensated by increased fitness in the related neighbour. This may lead to positive frequency dependency among related conspecifics with important ecological consequences for species assemblage and coexistence. However, kin selection in plants is still controversial. First, many studies documenting a plastic response to neighbour relatedness do not estimate fitness consequences of the individual that responds, and when estimated, fitness of individuals grown in competition with kin did not necessarily exceed that of individuals grown in non‐kin groups. Although higher fitness in kin groups could be consistent with kin selection, this could also arise from mechanisms like asymmetric competition in the non‐kin groups. Here we outline the main challenges for studying kin selection in plants taking genetic variation for competitive ability into account. We emphasize the need to measure inclusive fitness in order to assess whether kin selection occurs, and show under which circumstances kin selected responses can be expected. We also illustrate why direct fitness estimates of a focal plant, and group fitness estimates are not suitable for documenting kin selection. Importantly, natural selection occurs at the individual level and it is the inclusive fitness of an individual plant – not the mean fitness of the group – that can capture if a differential response to neighbour relatedness is favoured by kin selection.  相似文献   

14.
Darwin identified eusocial evolution, especially of complex insect societies, as a particular challenge to his theory of natural selection. A century later, Hamilton provided a framework for selection on inclusive fitness. Hamilton''s rule is robust and fertile, having generated multiple subdisciplines over the past 45 years. His suggestion that eusociality can be explained via kin selection, however, remains contentious. I review the continuing debate on the role of kin selection in eusocial evolution and suggest some lines of research that should resolve that debate.  相似文献   

15.
昆虫社会行为的进化与生态适应   总被引:1,自引:0,他引:1  
一、引言昆虫社会行为的进化涉及两大问题:(1)社会行为的起源和进化过程;(2)社会行为的适应意义。这两个问题都曾使达尔文感到困惑。达尔文曾详尽地描述过蜜蜂复杂的造巢行  相似文献   

16.
The evolution of animal societies in which some individuals forego their own reproductive opportunities to help others to reproduce poses an evolutionary paradox that can be traced to Darwin. Altruism may evolve through kin selection when the donor and recipient of altruistic acts are related to each other, as generally is the case in social birds and mammals. Similarly, social insect workers are highly related to the brood they rear when colonies are headed by a single queen. However, recent studies have shown that insect colonies frequently contain several queens, with the effect of decreasing relatedness among colony members. How can one account for the origin and maintenance of such colonies? This evolutionary enigma presents many of the same theoretical challenges as does the evolution of cooperative breeding and eusociality.  相似文献   

17.
Abstract.— Certain arguments concerning the evolution of eusociality form a classic example of the application of the principles of kin selection. These arguments center on the different degrees of relatedness of potential beneficiaries of an individual's efforts, for example a female's higher relatedness to her sisters than to her daughters in a haplodiploid system. This type of reasoning is insufficient to account for the evolution and maintainence of sexual reproduction, because parthenogenic females produce offspring that are more closely related to them than are offspring produced sexually. Among the forces invoked to explain sexual reproduction is deleterious mutation. This factor can be shown to favor eusociality as well, because siblings produced by helping carry fewer deleterious alleles on average than would offspring. The strength of this effect depends on the genomewide deleterious mutation rate, U, and on the selection coefficient, s, associated with deleterious alleles. For small s, the effect depends approximately on the product Us. This phenomenon illustrates that an assumption implicit in some analyses–that the relatedness of an individual to an actor is all that matters to its value to that actor–can fail for the evolution of eusociality as it does for the evolution of sex.  相似文献   

18.
While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies.  相似文献   

19.
One of the hallmarks of eusociality is that workers forego their own reproduction to assist their mother in raising siblings. This seemingly altruistic behaviour may benefit workers if gains in indirect fitness from rearing siblings outweigh the loss of direct fitness. If worker presence is advantageous to mothers, however, eusociality may evolve without net benefits to workers. Indirect fitness benefits are often cited as evidence for the importance of inclusive fitness in eusociality, but have rarely been measured in natural populations. We compared inclusive fitness of alternative social strategies in the tropical sweat bee, Megalopta genalis, for which eusociality is optional. Our results show that workers have significantly lower inclusive fitness than females that found their own nests. In mathematical simulations based on M. genalis field data, eusociality cannot evolve with reduced intra-nest relatedness. The simulated distribution of alternative social strategies matched observed distributions of M. genalis social strategies when helping behaviour was simulated as the result of maternal manipulation, but not as worker altruism. Thus, eusociality in M. genalis is best explained through kin selection, but the underlying mechanism is likely maternal manipulation.  相似文献   

20.
合作贮食是社会性动物应对食物匮乏的重要对策,但其内在的生态学机制尚未阐明。本文以布氏田鼠为研究对象,根据亲缘关系划分为亲缘组和非亲缘组。在人工实验箱中录像统计不同组别合作贮食行为占用时间的差异,探究亲缘关系对合作贮食行为的影响,并利用相关性分析探究亲缘组个体对贮食的贡献—收益关系以及与贮食行为相关的个体特征因素。结果表明,在组间水平上,与非亲缘组相比,亲缘组的布氏田鼠表现更多的合作贮食。在亲缘组个体水平上,不同个体对贮食的参与度和贡献度存在很大差异。个体对合作贮食的付出与其取食的收益呈显著负相关关系,并且个体合作贮食贡献越大,其睾丸指数和睾酮含量降低越显著。研究结果说明,亲缘关系的存在有利于布氏田鼠的合作贮食,但合作贮食贡献大的个体,其繁殖受到了抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号