首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
动物线粒体基因组研究进展   总被引:14,自引:0,他引:14  
对动物线粒体分子生物学的最新研究进展进行了较详细的阐述.从线粒体基因组(mtDNA)的研究背景出发,重点介绍了动物线粒体基因组的组成和结构特点,以及目前动物mtDNA与核基因组的关系、线粒体基因的遗传、起源和进化研究中的热点问题.  相似文献   

2.
The assumption that animal mitochondrial DNA (mtDNA) does not undergo homologous recombination is based on indirect evidence, yet it has had an important influence on our understanding of mtDNA repair and mutation accumulation (and thus mitochondrial disease and aging) and on biohistorical inferences made from population data. Recently, several studies have suggested recombination in primate mtDNA on the basis of patterns of frequency distribution and linkage associations of mtDNA mutations in human populations, but others have failed to produce similar evidence. Here, we provide direct evidence for homologous mtDNA recombination in mussels, where heteroplasmy is the rule in males. Our results indicate a high rate of mtDNA recombination. Coupled with the observation that mammalian mitochondria contain the enzymes needed for the catalysis of homologous recombination, these findings suggest that animal mtDNA molecules may recombine regularly and that the extent to which this generates new haplotypes may depend only on the frequency of biparental inheritance of the mitochondrial genome. This generalization must, however, await evidence from animal species with typical maternal mtDNA inheritance.  相似文献   

3.
Variation and change in mitochondrial DNA (mtDNA) is often assumed to conform to a constant mutation rate equilibrium neutral model of molecular evolution. Recent evidence, however, indicates that the assumptions underlying this model are frequently violated. The mitochondria) genome may be subject to the same suite of forces known to be acting in the nuclear genome, including hitchhiking and selection, as well as forces that do not affect nuclear variation. Wherever possible, evolutionary studies involving mtDNA should incorporate statistical tests to investigate the forces shaping sequence variation and evolution.  相似文献   

4.
Investigations of intraindividual sequence diversity in mtDNA are a key step in exploring the linkage between somatic mutations in mtDNA and mitochondrial genome evolution. This paper reports a directional cloning procedure enabling the isolation of multiple copies of the D-loop region of the mitochondrial genome from the fish Ameiurus nebulosus. Sequence analysis of 708 D-loop molecules revealed eight mutants, an average intraindividual mutation frequency of 1.12%. Three different types of mutations were detected but each derived from a single mutational event. By contrasting the spectrum of nucleotide variation at multiple biological levels, one can investigate the effects of spontaneous mutations on genome evolution. Such hierarchical analysis suggested shifts in the type and distribution of mtDNA (mitochondrial DNA) mutations at different biological levels, indicating the need to recognize three different rates of mtDNA sequence change from the cellular to population level.  相似文献   

5.
The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evolution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study the complete mtDNA genomes in large numbers of individuals, opening the field of mitochondrial population genomics. Here we describe a suitable methodology for determining the complete human mitochondrial sequence and the global mtDNA diversity in humans. Also, we discuss the implications of the results with respect to the different hypotheses for the evolution of modern humans.  相似文献   

6.
Breton S  Burger G  Stewart DT  Blier PU 《Genetics》2006,172(2):1107-1119
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.  相似文献   

7.
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6?kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.  相似文献   

8.
Eukaryotic cells typically contain numerous mitochondria, each with multiple copies of their own genome, the mtDNA. Uniparental transmission of mitochondria, usually via the mother, prevents the mixing of mtDNA from different individuals. While on the one hand, this should resolve the potential for selection for fast-replicating mtDNA variants that reduce organismal fitness, maternal inheritance will, in theory, come with another set of problems that are specifically relevant to males. Maternal inheritance implies that the mitochondrial genome is never transmitted through males, and thus selection can target only the mtDNA sequence when carried by females. A consequence is that mtDNA mutations that confer male-biased phenotypic expression will be prone to evade selection, and accumulate. Here, we review the evidence from the ecological, evolutionary and medical literature for male specificity of mtDNA mutations affecting fertility, health and ageing. While such effects have been discovered experimentally in the laboratory, their relevance to natural populations—including the human population—remains unclear. We suggest that the existence of male expression-biased mtDNA mutations is likely to be a broad phenomenon, but that these mutations remain cryptic owing to the presence of counter-adapted nuclear compensatory modifier mutations, which offset their deleterious effects.  相似文献   

9.
We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence.  相似文献   

10.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. The genome contains no introns involved in recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely low and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as the inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophila made it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

11.
The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children.  相似文献   

12.
Many land plants deviate from the maternal pattern of organelle inheritance. In this study, heterologous mitochondrial and chloroplast probes were used to investigate the inheritance of organelle genomes in the progeny of an intergeneric cross. The seed parent was LB 1-18 (a hybrid of Citrus reticulata Blanco cv. Clementine x C. paradisi Macf. cv. Duncan) and the pollen parent was the cross-compatible species Poncirus trifoliata (L.) Raf. All 26 progeny examined exhibited maternal inheritance of plastid petA and petD loci. However, 17 of the 26 progeny exhibited an apparent biparental inheritance of mitochondrial atpA, cob, coxII, and coxIII restriction fragment length polymorphisms (RFLPs) and maternal inheritance of mitochondrial rrn26 and coxI RFLPs. The remaining nine progeny inherited only maternal mitochondrial DNA (mtDNA) configurations. Investigations of plant mitochondrial genome inheritance are complicated by the multipartite structure of this genome, nuclear gene control over mitochondrial genome organization, and transfer of mitochondrial sequences to the nucleus. In this study, paternal mtDNA configurations were not detected in purified mtDNA of progeny plants, but were present in progeny DNA preparations enriched for nuclear genome sequences. MtDNA sequences in the nuclear genome therefore produced an inheritance pattern that mimics biparental inheritance of mtDNA.  相似文献   

13.
Due to its haploid nature and its predominantly uniparental mode of inheritance, the mitochondrial genome has been analyzed extensively in population and evolutionary genetic studies of eukaryotes. Among the mitochondrial DNA (mtDNA) fragments, the region surrounding the origin of replication is the most commonly studied. However, most of the studies have focused on animals and little is known about the extent and patterns of sequence variation around the mtDNA origin of replication (mtOri) in fungi. In this study, we found abundant variation in a 597bp fragment surrounding the mtOri for 53 isolates of the pathogenic yeast Candida albicans obtained from a diverse group of hosts in Hainan, a tropical island of China. Within this DNA fragment, a total of 17 haplotypes were found for the 53 isolates. The extent of sequence variation for this group of strains was similar to that for 24 strains that represented the global nuclear genotype diversity. In contrast to those in animals where there were significant biases in favor of transitional mutations (e.g. the transition to transversion ratio is about 20 in human mtDNA), our data showed a transition to transversion ratio of approximately 0.5 around mtOri in C. albicans. Our analysis revealed no apparent geographic pattern of sequence variation based on the birthplaces of the analyzed hosts. However, the sample from patients had a lower genotypic diversity than those from healthy hosts borne either in Hainan or elsewhere in China. Our results suggest that C. albicans mtDNA has a base substitution pattern different from its nuclear genome and that sequences from the mtOri region could enhance our understanding of C. albicans genome evolution and population structuring.  相似文献   

14.
Due to essentially maternal inheritance and a bottleneck effect during early oogenesis, newly arising mitochondrial DNA (mtDNA) mutations segregate rapidly in metazoan female germlines. Consequently, heteroplasmy (i.e. the mixture of mtDNA genotypes within an organism) is generally resolved to homoplasmy within a few generations. Here, we report an exceptional transpecific heteroplasmy (predicting an alanine/valine alloacceptor tRNA change) that has been stably inherited in oniscid crustaceans for at least thirty million years. Our results suggest that this heteroplasmy is stably transmitted across generations because it occurs within mitochondria and therefore escapes the mtDNA bottleneck that usually erases heteroplasmy. Consistently, at least two oniscid species possess an atypical trimeric mitochondrial genome, which provides an adequate substrate for the emergence of a constitutive intra-mitochondrial heteroplasmy. Persistence of a mitochondrial polymorphism on such a deep evolutionary timescale suggests that balancing selection may be shaping mitochondrial sequence evolution in oniscid crustaceans.  相似文献   

15.
It is generally assumed that mitochondrial genomes are uniparentally transmitted, homoplasmic and nonrecombining. However, these assumptions draw largely from early studies on animal mitochondrial DNA (mtDNA). In this review, we show that plants, animals and fungi are all characterized by episodes of biparental inheritance, recombination among genetically distinct partners, and selfish elements within the mitochondrial genome, but that the extent of these phenomena may vary substantially across taxa. We argue that occasional biparental mitochondrial transmission may allow organisms to achieve the best of both worlds by facilitating mutational clearance but continuing to restrict the spread of selfish genetic elements. We also show that methodological biases and disproportionately allocated study effort are likely to have influenced current estimates of the extent of biparental inheritance, heteroplasmy and recombination in mitochondrial genomes from different taxa. Despite these complications, there do seem to be discernible similarities and differences in transmission dynamics and likelihood of recombination of mtDNA in plant, animal and fungal taxa that should provide an excellent opportunity for comparative investigation of the evolution of mitochondrial genome dynamics.  相似文献   

16.
Mutations of mitochondrial DNA (mtDNA) are frequent in humans and are implicated in many different types of pathology. The high substitution rate and the maternal, asexual mode of transmission of mtDNA make it more likely to accumulate deleterious mutations. Here, we discuss recent evidence that mtDNA transmission is subject to strong purifying selection in the mammalian female germ line, limiting the accumulation of such mutations. This process shapes mitochondrial sequence diversity and is therefore probably of fundamental importance for animal evolution and in human mitochondrial disease.  相似文献   

17.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.  相似文献   

18.
There exists remarkable interspecific variation in mitochondrial sequence evolution rates and in mitochondrial genome sizes. A number of hypotheses based on the forces of mutation and selection have been proposed to explain this variation. Among such hypotheses, we test three: 1) the ‘longevity‐dependent selection’, 2) the ‘functional constraints’ and 3) the ‘race for replication’ hypotheses, using published mtDNA genomic sequences of 47 Nematoda species. We did not find any relationship between body size (used as a proxy for longevity) and genome size or the substitution rate of protein sequences, providing little evidence for the first hypothesis. Parasitic species from different thermal habitats, as determined by their definitive host type (ectothermal vs. endothermal), did not differ in their rates of protein evolution. Therefore, little support was obtained for the second hypothesis. However, we revealed that mitogenomes of parasites of endotherms were significantly smaller than those of parasites of ectotherms, supporting the race for replication hypothesis. As mitochondrial genomes of endothermal animals are usually more compact than those of ectothermal animals, intriguingly, nematode parasites of endotherms and ectotherms exhibit similar patterns of mtDNA length variation to their hosts.  相似文献   

19.
The evidence on mitochondrial genome variation and its role in evolution of the genus Drosophila are reviewed. The mitochondrial genome is represented by a circular double-stranded DNA molecule 16 to 19 kb in length. Mitochondrial genes lack introns and recombination. The entire mitochondrial genome can be arbitrarily divided into three parts: (1) protein-coding genes; (2) genes encoding rRNA and tRNA; and (3) the noncoding regulatory region (A + T region). The selective importance of mutations within different mtDNA regions is therefore unequal. In Drosophila, the content of the A + T pairs in mtDNA is extremely high and a pattern of nucleotide substitution is characterized by a low transition/transversion ratio (and a low threshold of mutation saturation). The deletions and duplications are of common occurrence in the mitochondrial genome. However, this genome lacks such characteristic for the nuclear genome aberrations as inversions and transpositions. The phenomena of introgression and heteroplasmy provide an opportunity to study the adaptive role of the mitochondrial genome and its role in speciation. Analysis of evidence concerning mtDNA variation in different species of the genus Drosophilamade it possible to ascertain data on phylogenetic relationships among species obtained by studying nuclear genome variation. In some species, mtDNA variation may serve as a reliable marker for population differentiation within a species, although evidence on the population dynamics of the mtDNA variation is very scarce.  相似文献   

20.
Bivalves of the families Mytilidae and Unionidae show a unique mode of mitochondrial DNA inheritance called doubly uniparental inheritance. In addition to receiving the maternally transmitted mtDNA lineage, males receive a separate mtDNA genome from their fathers. This system is sometimes compromised, in that female genomes are occasionally recruited into the male cycle of inheritance. These masculinization events are common in the Mytilidae but have not been reported in the Unionidae. In order to estimate the age of the male and the female lineages in the Unionidae and to look for evidence of masculinization, we sequenced the junction between the cytochrome c oxidase II gene and the cytochrome c oxidase I gene. The unionid male and female lineages diverged approximately 450 MYA. There is no evidence for masculinization during this period, suggesting that there are taxon-specific differences in the rate of masculinization. Coincidentally, a 200-codon extension of the COII gene is present in the male genome of the Unionidae and may be responsible for the absence of masculinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号