首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. J. Morphol. 275:1016–1026, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Few studies have been conducted on the sagittal otolith shape and morphometry of Nemipterus randalli, and none of these studies has examined the effect of sexual dimorphism on the otolith morphology of this species, therefore this study aimed to contribute to knowledge about the otolith morphology of N. randalli, an invasive fish species for the Mediterranean Sea. For this purpose, a total of 132 samples (51 female and 81 male) were obtained from İskenderun Bay with the help of commercial fishermen in November 2018. Relationships between otolith measurements and fish size were determined. Shape indices and elliptic Fourier coefficients were calculated. Significant differences were detected between males and females in all analysis. The sexes were separated from each other using both shape indices and elliptic Fourier coefficients. However, shape analysis was more effective in distinguishing sexes than traditional morphometric analysis. Asymmetry in the otolith morphology of sexes has been attributed to differences in the growth and sexual maturity of male and female fish. The results of this study indicated that sexual dimorphism in Nemipterus randalli was also reflected in the otolith morphology.  相似文献   

4.
Sexual selection influences the evolution of morphological traits that increase the likelihood of monopolizing scarce resources. When such traits are used during contests, they are termed weapons. Given that resources are typically linked to monopolizing mating partners, theory expects only males to bear weapons. In some species, however, females also bear weapons, although typically smaller than male weapons. Understanding why females bear smaller weapons can thus help us understand the selective pressures behind weapon evolution. However, most of our knowledge comes from studies on weapon size, while the biomechanics of weapons, such as the size of the muscles, efficiency, and shape are seldom studied. Our goal was to test if the theoretical expectations for weapon size sexual dimorphism also occur for weapon biomechanics using two aeglid crab species. Males of both species had larger claws which were also stronger than female claws. Male claws were also more efficient than females' claws (although we used only one species in this analysis). For weapon shape, though, only one species differed in the mean claw shape. Regarding scaling differences, in both species, male claws had higher size scaling than females, while only one species had a higher shape scaling. However, male weapons did not have higher scaling regarding strength and efficiency than females. Thus, males apparently allocate more resources in weapons than females, but once allocated, muscle and efficiency follow a similar developmental pathway in both sexes. Taken together, our results show that sexual dimorphism in weapons involves more than differences in size. Shape differences are especially intriguing because we cannot fully understand its causes. Yet, we highlight that such subtle differences can only be detected by measuring and analysing weapon shape and biomechanical components. Only then we might better understand how weapons are forged.  相似文献   

5.
Ontogenetic studies of African ape skulls lead to an analysis of morphological differences in terms of allometry, heterochrony, and sexual dimorphism. The use of geometric morphometrics allows us 1) to define size and shape variations as independent factors (an essential but seldom respected condition for heterochrony), and 2) to calculate in percentage of shape changes and to graphically represent the parts of shape variation which are related to various biological phenomena: common allometry, intraspecific allometry, and allometric and nonallometric shape discrimination. Three tridimensional Procrustes analyses and the calculation of multivariate allometries, discriminant functions, and statistical tests are used to compare the skulls of 50 Pan troglodytes, and 50 Gorilla gorilla of different dental stages. The results both complement and modify classical results obtained from similar material but with different methods. Size and Scaling in Primate Morphology, New York: Plenum, p. 175-205). As previously described by Shea, the common growth allometric pattern is very important (64% of total shape variation). It corresponds to a larger increase of facial volume than of neurocranial volume, a more obliquely oriented foramen magnum, and a noticeable reshaping of the nuchal region (higher inion). However, the heterochronic interpretation based on common allometry is rather different from Shea. Gorillas differ from chimpanzees not only with a larger magnitude of allometric change (rate peramorphosis), as is classically said, but also grow more in size than in shape (size acceleration). In other words, for a similar stage of growth, gorillas have the size and shape corresponding to older chimpanzees, and for a similar shape, gorillas have a larger size than chimpanzees. In contrast, sexual dimorphism actually corresponds to allometric changes only, as classically demonstrated (time hypermorphosis). Sexual dimorphism is here significant in adult gorillas alone, and solely in terms of allometry (size-related shape and size, given that sagittal and nuchal crests are not taken into account). The study also permits us to differentiate two different shape variations that are classically confused in ontogenetic studies: a very small part of allometric shape change which is specific to each species (1% of the total shape variation), and nonallometric species-specific traits independent of growth (8% of total shape change). When calculated in terms of intraspecific allometries (including common allometry and noncommon allometry), shape changes are more extensive in gorillas (36% of total shape change) than in chimpanzees (29% of total shape change). The allometric differences mainly concern the inion, which becomes higher; the position of the foramen magnum, more dorsally oriented; and the palate, more tilted in adult gorillas than in adult chimpanzees. In contrast, nonallometric species-specific traits in gorillas are the long and flat vault characterized by a prominent occipital region, the higher and displaced backward glabella, and the protrusive nose. Biomechanical schemes built from shape partition suggest that the increased out-of-plumb position of the head during growth is partially compensated in gorillas by a powerful nuchal musculature due to the peculiar shape of the occipital region.  相似文献   

6.
This paper examines the hypothesis raised by recent studies that postnatal trajectories of shape change in the facial skeleton are parallel between, at least, chimpanzees, modern humans and also fossil hominins, specifically australopithecines and possibly Neanderthals. In contrast, other studies point to divergences in postnatal shape trajectories within diverse groups of primates. As such there is some debate regarding the relative contributions of pre and postnatal ontogeny to adult morphological differences. This paper presents a series of geometric morphometric studies of the ontogeny of facial shape in hominins with the specific aim of resolving these issues. The results indicate that many differences in facial shape between hominins are established prenatally, however highly significant divergences of postnatal facial ontogeny are found among living hominins. Our studies point to possible differences between the shape ontogeny of the Australopithecus africanus face and that of African apes on the one hand and humans on the other. However, sampling experiments indicate that the small sample size of available specimens of A. africanus does not permit any conclusions to be drawn regarding comparative shape ontogeny of the face.  相似文献   

7.
Dworkin I  Palsson A  Gibson G 《Genetics》2005,169(4):2115-2125
Linkage disequilibrium mapping has been used extensively in medical and evolutionary genetics to map causal polymorphisms within genes associated with disease status or phenotypic variation for a trait. However, the initial findings of most nonhuman studies have not been replicated in subsequent studies, due in part to false positives, as well as additional factors that can render true positives unreplicable. These factors may be more severe when the initial study is performed using an experimental population of organisms reared under controlled lab conditions. We demonstrate that despite considerable phenotypic differences for wing shape between a lab-reared experimental population and a wild-caught cohort of Drosophila melanogaster, an association between a putative regulatory polymorphism in Egfr and wing shape can be replicated. These results are discussed both within the framework of future association-mapping studies and within the context of the evolutionary dynamics of alleles in populations.  相似文献   

8.
In the human species, the two uniparental genetic systems (mitochondrial DNA and Y chromosome) exhibit contrasting diversity patterns. It has been proposed that sex-specific behaviours, and in particular differences in migration rate between men and women, may explain these differences. The availability of high-density genomic data and the comparison of genetic patterns on autosomal and sex chromosomes at global and local scales allow a reassessment of the extent to which sex-specific behaviours shape our genome. In this article, we first review studies comparing the genetic patterns at uniparental and biparental genetic systems and assess the extent to which sex-specific migration processes explain the differences between these genetic systems. We show that differences between male and female migration rates matter, but that they are certainly not the only contributing factor. In particular, differences in effective population size between men and women are also likely to account for these differences. Then, we present and discuss three anthropological processes that may explain sex-specific differences in effective population size and thus human genomic variation: (i) variance in reproductive success arising from, for example, polygyny; (ii) descent rules; and (iii) transmission of reproductive success.  相似文献   

9.
MreB proteins are bacterial homologues of actin that directly determine cell shape and are involved in a range of other cellular processes in non-spherical bacteria. Like F-actin in eukaryotes, MreBs self-assemble into dynamic filamentous structures that are essential for cell viability. Recent studies have demonstrated that the MreB cytoskeletal scaffold governs shape determination by controlling functions related to the bacterial cell wall (probably by recruiting and directing peptidoglycan-synthesizing and modifying proteins). Here I consider general implications for bacterial morphogenesis, and the basis for differences in wall expansion and cylindrical cell shape, based on recent studies aimed to determine the role of MreBs in bacteria with different modes of growth.  相似文献   

10.
11.
Leaf morphology has been the subject of several studies in NoNothofagur especially in the context of the taxonomy and evolutionary relationships of taxa within the genus, which are still controversial. The leaf architecture of 8 dombgi , N. betuloides and N. nitida , dominant trees of temperate forest in southern South America, is compared using venation patterns, landmarks, and entire outlines. In terms of venation patterns N. dombgi and N. betuloides were more similar to each other than to N. nitida. Similar results were found when differences in shape were analysed by discriminant analyses of shape coordinates (landmarks) and Fourier coefficients (outlines). For both analyses, the fwst discriminant function separated N. nitida from the other two species; these were also distinguished but showed greater overlap with each other. This study, in concert with information from allozyme data confirms the hypothesis of a more ancestral position for N. nitida with N. dombgi and N. betuloides being more recently derived. In addition to differences in shape, the size component of leaf morphology indicated that whereas N. betuloides had the smallest leaves, N. dombgi spanned the greatest range and has the biggest leaves. Given that the data shown here were obtained from seedlings grown under common-garden conditions, differences in both shape and size, seem to be important components of leaf morphology that may warrant consideration in characterizing these and other species of Nothofagus.  相似文献   

12.
Integrating studies of ontogeny with analyses of disparity can reveal important and surprising insights into the origins of disparity and why it varies among groups. One such potentially surprising insight is that disparity could be constant over ontogeny even though species differ in both rates and timings of development and in their ontogenetic changes in shape. Several studies of both primates and rodents have concluded that disparity is generated prenatally although some have concluded that it arises postnatally. However, neither constancy nor an ontogenetic increase in disparity has been ever been rigorously documented for either primates or rodents. For a small sample of rodents, we show that species differ in their postnatal ontogenies but infants are neither more nor less disparate than adults and the major dimensions of disparity distinguishing the main clades also do not change. The constancy in both the level of disparity and its main dimensions does not result primarily from the subtlety of postnatal differences. Those differences are indeed subtle but the disparity in directions of ontogenetic shape change is nonetheless sufficient to increase shape disparity significantly. Disparity does not increase postnatally primarily because ontogenies are not strictly linear; disparity generated postnatally counteracts that produced earlier. What limits the progressive accumulation of disparity is the curvature of ontogenetic trajectories, a curvature presumably due to ontogenetic changes in the spatial distribution of rates of bone deposition and resorption.  相似文献   

13.
Freshwater fishes often show large amounts of body shape variation across divergent habitats and, in most cases, the observed differences have been attributed to the environmental pressures of living in lentic or lotic habitats. Previous studies have suggested a distinct set characters and morphological features for species occupying each habitat under the steady–unsteady swimming performance model. We tested this model and assessed body shape variation using geometric morphometrics for two widespread fishes, Goodea atripinnis (Goodeidae) and Chirostoma jordani (Atherinopsidae), inhabiting lentic and lotic habitats across the Mesa Central of Mexico. These species were previously shown to display little genetic variation across their respective ranges. Our body shape analyses reveal morphometric differentiation along the same axes for both species in each habitat. Both possess a deeper body shape in lentic habitats and a more streamlined body in lotic habitats, although the degree of divergence between habitats was less for C. jordani. Differences in the position of the mouth differed between habitats as well, with both species possessing a more superior mouth in lentic habitats. These recovered patterns are generally consistent with the steady–unsteady swimming model and highlight the significance of environmental forces in driving parallel body shape differences of organisms in divergent habitats. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 152–162.  相似文献   

14.
15.
Character displacement (CD) is the evolutionary process which leads to the divergence in trait expression of closely related species in regions where species co-occur, compared to allopatric populations. In Europe CD has been investigated in males of Calopteryx splendens and C. virgo and has been related to species recognition. If species recognition is relevant for males, also females should benefit from CD. The most obvious differences between females of these two species are wing profile and colour. We sampled females from allopatric and from sympatric populations with different relative abundances of these species. Wing shape and pigmentation were evaluated for each damselfly. CD was found in wing profile but not in wing transparency. The relative abundance of species significantly affected CD, but with a different pattern in each species. The prediction that wing shape become more different from the allopatric state when the species was relatively rare, but more similar to the allopatric state when the species was common was evident only for C. splendens. Wing shape changes might increase differences in flying patterns making males more effective to discriminate between heterospecific females. So, CD we observed may be the result of a selection directed to reduce interspecific reproductive interference.  相似文献   

16.
Otolith shape analysis of Atlantic herring (Clupea harengus) in Norwegian waters shows significant differentiation among fjords and a latitudinal gradient along the coast where neighbouring populations are more similar to each other than to those sampled at larger distances. The otolith shape was obtained using quantitative shape analysis, the outlines were transformed with Wavelet and analysed with multivariate methods. The observed morphological differences are likely to reflect environmental differences but indicate low dispersal among the local herring populations. Otolith shape variation suggests also limited exchange between the local populations and their oceanic counterparts, which could be due to differences in spawning behaviour. Herring from the most northerly location (69°N) in Balsfjord, which is genetically more similar to Pacific herring (Clupea pallasii), differed in otolith shape from all the other populations. Our results suggest that the semi-enclosed systems, where the local populations live and breed, are efficient barriers for dispersal. Otolith shape can thus serve as a marker to identify the origin of herring along the coast of Norway.  相似文献   

17.
There remain some difficulties in delimitation of related genera or sibling species for cantharid beetles, because the traditionally taxonomic method and morphological characters have not been updated or introduced. In the present study, we firstly use the landmark-based geometric morphometrics to analyze and compare the hind wings of nine species belonging to three genera of Cantharinae to ascertain whether this approach may be used as a reliable method in the study of the taxonomy of this group. The results show that the shape differences of the hind wings among genera seem more variable than that within each genus, and the variations for each species are different from one another, as shown in the principal component analyses. And the canonical variates analyses show that there are significant differences among the genera and the species of each genus, which demonstrates that the hind wing shape can be diagnostic for both generic and specific identification of the cantharid beetles. This study sheds new light into clarifying the taxonomic uncertainties of Cantharidae, and lays a foundation for further studies on the evolution of the cantharid hind wing shape.  相似文献   

18.
Paleontological and phylogenetic studies have shown that floral zygomorphy (bilateral symmetry) has evolved independently in several plant groups from actinomorphic (radially symmetric) ancestors as a consequence of strong selection exerted by specialized pollinators. Most studies focused on unraveling the developmental genetics of flower symmetry, but little is known about the adaptive significance of intraspecific flower shape variation under natural conditions. We provide the first evidence for natural selection favoring zygomorphy in a wild population of Erysimum mediohispanicum (Brassicaceae), a plant showing extensive continuous variation in flower shape, ranging from actinomorphic to zygomorphic flowers. By using geometric morphometric tools to describe flower shape, we demonstrate that plants bearing zygomorphic flowers received more pollinator visits and had the highest fitness, measured not only by the number of seeds produced per plant but also by the number of seeds surviving to the juvenile stage. This study provides strong evidence for the existence of significant fitness differences associated with floral shape variation in E. mediohispanicum, thus illuminating a pathway for the evolution of zygomorphy in natural populations.  相似文献   

19.
Humans and macaques are more sensitive to differences in nonaccidental image properties, such as straight vs. curved contours, than to differences in metric properties, such as degree of curvature [Biederman, I., Bar, M., 1999. One-shot viewpoint invariance in matching novel objects. Vis. Res. 39, 2885-2899; Kayaert, G., Biederman, I., Vogels, R., 2003. Shape tuning in macaque inferior temporal cortex. J. Neurosci. 23, 3016-3027; Kayaert, G., Biederman, I., Vogels, R., 2005. Representation of regular and irregular shapes in macaque inferotemporal cortex. Cereb. Cortex 15, 1308-1321]. This differential sensitivity allows facile recognition when the object is viewed at an orientation in depth not previously experienced. In Experiment 1, we trained pigeons to discriminate grayscale, shaded images of four shapes. Pigeons made more confusion errors to shapes that shared more nonaccidental properties. Although the images in that experiment were not well controlled for incidental changes in metric properties, the same results were apparent with better controlled stimuli in Experiment 2: pigeons trained to discriminate a target shape from a metrically changed shape and a nonaccidentally changed shape committed more confusion errors to the metrically changed shape, suggesting that they perceived it to be more similar to the target shape. Humans trained with similar stimuli and procedure exhibited the same tendency to make more errors to the metrically changed shape. These results document the greater saliency of nonaccidental differences for shape recognition and discrimination in a non-primate species and suggest that nonaccidental sensitivity may be characteristic of all shape-discriminating species.  相似文献   

20.
Subspecific variation is widespread in vertebrates. Within Africa, several mammals have extensive geographic distributions with attendant morphological, ecological, and behavioural variations, which are often used to demarcate subspecies. In the present study, we use a primate species, the vervet monkey, Cercopithecus aethiops, as a case study for intraspecific divergence in widespread mammals, assessed through hard tissue morphology. We examine intraspecific differences in size, shape, and non‐allometric shape from a taxonomic perspective, and discuss the macroevolutionary implications of findings from microevolutionary analyses of geographic variation. A geometric morphometric approach was used, employing 86 three‐dimensional landmarks of almost 300 provenanced crania. Many of the taxonomic differences in skull morphology between vervet populations appear to be related to geographic proximity, with subspecies at opposite extremes of a west‐to‐east axis showing greatest divergence, and populations from central and south Africa being somewhat intermediate. The classification rate from discriminant analyses was lower than that observed in other African primate radiations, including guenons as a whole and red colobus. Nonetheless, taxonomic differences in shape were significant and not simply related to either geography or size. Thus, although shifts in size may be an important first step in adaptation and diversification, with size responding more quickly than shape to environmental change, the six vervet taxa currently recognized (either as species or subspecies) are not simply allometrically scaled versions of one another and are probably best viewed as subspecies. Holding allometry constant when examining inter‐population differences in shape may thus help to reveal the early stages of evolutionary divergence. The vervet case study presented here hence has relevance for future studies examining intraspecific differentiation in other large mammals, particularly through the methods used to identify small but biologically meaningful divergence, with attendant implications for conservation planning. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 823–843.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号