首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stomatal Density and Bio-water Saving   总被引:1,自引:0,他引:1  
Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial. Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes that are controlled by two major factors: stomatal behavior and density. Stomatal behavior has been the focus of intensive research, while less attention has been paid to stomatal density. Recently, a number of genes controlling stomatal development have been identified. This review summarizes the recent progress on the genes regulating stomatal density, and discusses the role of stomatal density in plant water use efficiency and the possibility to increase plant water use efficiency, hence bio-water saving by genetically manipulating stomatal density.  相似文献   

2.
Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial. Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes that are controlled by two major factors: stomatal behavior and density. Stomatal behavior has been the focus of intensive research, while less attention has been paid to stomatal density. Recently, a number of genes controlling stomatal development have been identified. This review summarizes the recent progress on the genes regulating stomatal density, and discusses the role of stomatal density in plant water use efficiency and the possibility to increase plant water use efficiency, hence bio-water saving by genetically manipulating stomatal density.  相似文献   

3.
A striking coordination is observed in sugarcane between prevailing levels of stomatal opening and the hydraulic capacity of the soil, roots and stem to supply the leaves with water. This coordination of vapor phase and liquid phase conductances is associated with decreases in stomatal conductance on a leaf area basis that compensate for increasing leaf area during canopy development, causing transpiration to approach a maximum value on a per plant or ground area basis rather than increase linearly with leaf area. The resulting balance between water loss and water transport capacity maintains leaf water status remarkably constant over a wide range of plant. sizes and growing conditions. These changes in stomatal conductance during development are determined by changes in the composition of the xylem sap rather than by changes in leaf properties. Changes in boundary layer conductance resulting from non-developmental changes in canopy structure such as loding cause additional changes in stomatal conductance mediated by altered humidity at the leaf surface. These maintain a constant level of total canopy vapor phase conductance (stomatal and boundary layer in series) and a constant level of canopy transpiration. These patterns indicate that stomata exert an active role in regulating transpiration even in dense canopies. This control function is consistent with stomatal metering of transpiration, mediated by fluxes of root-derived materials in the xylem sap.  相似文献   

4.
Dynamics in microclimate and physiological plant traits were studied for Pubescent oak and Scots pine in a dry inner-alpine valley in Switzerland, at a 10 min resolution for three consecutive years (2001-2003). As expected, stomata tended to close with increasing drought in air and soil. However, stomatal aperture in oak was smaller than in pine under relatively wet conditions, but larger under dry conditions. To explore underlying mechanisms, a model was applied that (i) quantifies water relations within trees from physical principles (mechanistic part) and (ii) assumes that signals from light, stomatal aperture, crown water potential, and tree water deficit in storage pools control stomata (systemic part). The stomata of pine showed a more sensitive response to increasing drought because both factors, the slowly changing tree water deficit and the rapidly changing crown water potential, closed the stomata. By contrast, the stomata of oak became less drought-sensitive as the closing signal of crown water potential was opposed by the opening signal of tree water deficit. Moreover, parameter optimization suggests that oak withdrew more water from the storage pools and reduced leaf water potentials to lower levels, without risking serious damage by cavitation. The new model thus suggests how the hydraulic water flow and storage system determines the responses in stomatal aperture and transpiration to drought at time scales ranging from hours to multiple years, and why pine and oak might differ in such responses. These differences explain why oaks are more efficient competitors during drought periods, although this was not the case in the extremely dry year 2003, which provoked massive leaf loss and, from July onwards, physiological activity almost ceased.  相似文献   

5.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

6.
McAdam SA  Brodribb TJ 《The Plant cell》2012,24(4):1510-1521
Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.  相似文献   

7.
Stomatal control of transpiration from a developing sugarcane canopy   总被引:2,自引:2,他引:0  
Abstract. Stomatal conductance of single leaves and transpiration from an entire sugarcane (Saccharum spp. hybrid) canopy were measured simultaneously using independent techniques. Stomatal and environmental controls of transpiration were assessed at three stages of canopy development, corresponding to leaf area indices (L) of 2.2, 3.6 and 5.6. Leaf and canopy boundary layers impeded transport of transpired water vapour away from the canopy, causing humidity around the leaves to find its own value through local equilibration rather than a value determined by the humidity of the bulk air mass above the canopy. This tended to uncouple transpiration from direct stomatal control, so that transpiration predicted from measurement of stomatal conductance and leaf-to-air vapour pressure differences was increasingly overestimated as the reference point for ambient vapour pressure measurement was moved farther from the leaf and into the bulk air. The partitioning of control between net radiation and stomata was expressed as a dimensionless decoupling coefficent ranging from zero to 1.0. When the stomatal aperture was near its maximum this coefficient was approximately 0.9, indicating that small reductions in stomatal aperture would have had little effect on canopy transpiration. Maximum rates of transpiration were, however, limited by large adjustments in maximum stomatal conductance during canopy development. The product of maximum stomatal conductance and L. a potential total canopy conductance in the absence of boundary layer effects, remained constant as L increased. Similarly, maximum canopy conductance, derived from independent micrometeorological measurements, also remained constant over this period. Calculations indicated that combined leaf and canopy boundary layer conductance decreased with increasing L such that the ratio of boundary layer conductance to maximum stomatal conductance remained nearly constant at approximately 0.5. These observations indicated that stomata adjusted to maintain both transpiration and the degree of stomatal control of transpiration constant as canopy development proceeded.  相似文献   

8.
弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化   总被引:15,自引:0,他引:15       下载免费PDF全文
 植物能够对生长环境产生生态适应性,这种适应性可从气孔导度、光合速率、水分利用效率等生态指标上反映出来。为了研究葡萄蒸腾特性对弱光环境的适应性变化,本试验以‘京玉’葡萄幼苗(Vitis vinefera cv. Jingyu)为试验材料,通过遮光处理(2个处理,分别遮光65%和85%)营造弱光环境,测定了在弱光环境下生长的葡萄叶片蒸腾速率、气孔导度、水分利用效率对光照强度的响应,同时用扫描电镜技术观察了气孔的发育。结果表明,弱光环境下生长的葡萄幼苗,叶片的水势较高,但水分利用效率较低,叶片蒸腾速率和气孔导度变化对光照强度的响应缓慢,而自然光下生长的葡萄叶片则反应较迅速。通过对气孔结构的研究发现,与自然光照环境下生长的植株相比,在弱光环境下生长的葡萄幼苗,叶片下表皮的气孔横轴变宽,大小气孔之间差异减少,气孔外突,表皮细胞变大甚至扭曲,角质层变薄。说明葡萄幼苗能够对弱光环境产生适应性变化,其蒸腾特性的变化与其气孔结构的变化相关,具有一致性。  相似文献   

9.
Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection for very short sunflecks (tens of seconds).  相似文献   

10.
The control of stomata by water balance   总被引:26,自引:0,他引:26  
It is clear that stomata play a critical role in regulating water loss from terrestrial vegetation. What is not clear is how this regulation is achieved. Stomata appear to respond to perturbations of many aspects of the soil-plant-atmosphere hydraulic continuum, but there is little agreement regarding the mechanism (or mechanisms) by which stomata sense such perturbations. This review discusses feedback and feedforward mechanisms by which hydraulic perturbations are putatively transduced into stomatal movements, in relation to generic empirical features of those responses. It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically related stomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatal effectors. Furthermore, many curious phenomena that appear inconsistent with feedback, such as 'apparent feedforward' humidity responses and 'isohydric' behaviour (water potential homeostasis), are in fact expected to emerge from the juxtaposition of hydro-active local feedback and the well-known hysteretic and threshold-like effect of water potential on xylem hydraulic resistance.  相似文献   

11.
气孔是植物特化的表皮结构,在植物蒸腾过程和与外界气体交换过程中起到重要作用。拟南芥YDA(AtYDA)是MAPK级联信号途径中的一种激酶(MAPKKK4),它在叶片气孔的发育过程中起着负调控的作用。AtYDA功能缺失导致叶片气孔显著增加,而表达组成型激活形式的AtYDA(ΔN-YDA)则会导致表皮产生无气孔表型。本研究克隆了水稻中与AtYDA同源的2个基因OsYDA1和OsYDA2。在拟南芥中过量表达这2个基因都导致了叶片气孔密度的减少和叶片失水速率的降低。而表达ΔN-OsYDA1和ΔN-OsYDA2的转基因植株则呈气孔系数下降的表型。这表明OsYDA与AtYDA在调控气孔发育的功能上具有保守性。  相似文献   

12.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   

13.
Transpiration rates of single leaves of Pelargonium and wheatwere measured under constant conditions of light, temperature,and air flow. Concurrently, stomatal movement was followed withthe resistance porometer during cycles of changing water contentof the leaf and changes induced by light and darkness. Stomatalmovement was found to exert a large controlling influence onthe transpiration rate, whereas water content had an extremelysmall or negligible effect. An approximately inverse linearrelation between transpiration rate and logarithm of resistanceto viscous flow through the leaf is believed to be the resultantof an inverse curvilinear relationship between the diffusiveconductance of the stomata and log. leaf resistance and thedecreasing difference of vapour pressure arising from the highertranspiration rates with increasing stomatal conductances. Nevertheless,the relation demonstrates that the transpiration rate is influencedby the degree of stomatal opening throughout its entire range. There was some evidence of lower transpiration rates duringand after recovery from wilting than before wilting. This isattributed to a decrease in a cell-wall conductance, the evaporatingsurface being located within the cell wall. During wilting partiallyirreversible contraction of the cell wall occurs. There wasalso evidence of slow changes in cell volume at full turgidityattributable to plastic flow. These occurred when the leaf wastransferred from environments of a high to low potential forevaporation. Extensive movement of the stomata followed changes in leaf water,passive opening resulting from decrease and closure from increaseof leaf water. It is suggested that the direction and extentof stomatal changes induced by water deficits is a consequenceof the rate of change of leaf water content and not of the absolutevalues. The stomata also showed an enhanced tendency to closein dry moving air following a period of wilting even after theleaf had regained turgidity.  相似文献   

14.
A mechanism for co-ordinating behaviour of stomata within an areole during patchy stomatal conductance has recently been proposed. This mechanism depends on hydraulic interactions among stomata that are mediated by transpiration-induced changes in epidermal turgor. One testable prediction that arises from this proposed mechanism is that the strength of hydraulic coupling among stomata should be proportional to evaporative demand and, therefore, inversely proportional to humidity. When a leaf is illuminated following a period of darkness, there is typically a period of time, termed the Spannungsphase, during which guard cell osmotic and turgor pressure are increasing, but the pore remains closed. If hydraulic coupling is proportional to evaporative demand, then variation among stomata in the duration of the Spannungsphase should be lower for leaves at low humidity than for leaves at high humidity. A similar prediction emerged from a computer model based on the proposed hydraulic mechanisms. These predictions were tested by measuring individual stomatal apertures on intact transpiring leaves at low and high humidity and on vacuum-infiltrated leaf pieces (to eliminate transpiration) as PFD was increased to high values from either darkness or a low value. Results showed that the range of Spannungsphasenamong stomata was reduced at low humidity compared to high humidities. Experiments that began at low PFD, rather than at darkness, showed no delay in stomatal opening. These results are discussed in the context of the proposed hydraulic coupling mechanisms.  相似文献   

15.
本文研究了高寒矮嵩草草甸6种植物叶片气孔的分布、密度和开闭日变化规律与蒸腾强度的关系。结果表明:多数植物上下表皮均有气孔分布,而矮嵩草的气孔集中分布在下表皮,羊茅的气孔集中分布在上表皮。同一植物类群中,叶片气孔密度大者,植物蒸腾强度也相对较高。气孔日变化是在日出后,随气温和大气湿度的变化而变化,在9时和午后3时气孔几乎全部张开,然后逐渐关闭。植物蒸腾强度随气孔开闭而发生变化,矮嵩草的蒸腾强度在11时左右达到峰值;垂穗披碱草和美丽风毛菊是在午后1时达到峰值,植物没有“午睡” 现象。  相似文献   

16.
Cavitation decreases the hydraulic conductance of the xylem and has, therefore, detrimental effects on plant water balance. However, cavitation is also hypothesized to relieve water stress temporarily by releasing water from embolizing conduits to the transpiration stream. Stomatal closure in response to decreasing water potentials in order to avoid excessive cavitation has been well documented in numerous previous studies. However, it has remained unclear whether the stomata sense cavitation events themselves or whether they act in response to a decrease in leaf water potential to a level at which cavitation is initiated. The effects of massive cavitation on leaf water potential, transpiration, and stomatal behaviour were studied by feeding a surfactant into the transpiration stream of Scots pine (Pinus sylvestris) seedlings. The stomatal response to cavitation in connection with the capacitive effect was also studied. A major transient increase in leaf water potential was found due to cavitation in the seedlings. As cavitation was induced by lowering the surface tension, the two mechanisms could be uncoupled, as the usual relation between xylem water potential and the onset of cavitation did not hold. Our results indicate that the seedlings responded more to leaf water potential and less to cavitation itself, as stomatal closure was insufficient to prevent the seedlings from being driven to 'run-away' cavitation in a manner of hours.  相似文献   

17.
Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build‐up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.  相似文献   

18.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

19.
? Understory plants are subjected to highly intermittent light availability and their leaf gas exchanges are mediated by delayed responses of stomata and leaf biochemistry to light fluctuations. In this article, the patterns in stomatal delays across biomes and plant functional types were studied and their effects on leaf carbon gains and water losses were quantified. ? A database of more than 60 published datasets on stomatal responses to light fluctuations was assembled. To interpret these experimental observations, a leaf gas exchange model was developed and coupled to a novel formulation of stomatal movement energetics. The model was used to test whether stomatal delays optimize light capture for photosynthesis, whilst limiting transpiration and carbon costs for stomatal movement. ? The data analysis showed that stomatal opening and closing delays occurred over a limited range of values and were strongly correlated. Plant functional type and climate were the most important drivers of stomatal delays, with faster responses in graminoids and species from dry climates. ? Although perfectly tracking stomata would maximize photosynthesis and minimize transpiration at the expense of large opening costs, the observed combinations of opening and closure times appeared to be consistent with a near-optimal balance of carbon gain, water loss and movement costs.  相似文献   

20.
Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations – while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem–epidermis water supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号