首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To prevent lake degradation, water level management has been a major focus of research in the past several decades. There are, however, some shortcomings in the traditional studies, and the protection of entire ecosystems is difficult to achieve in practice. In this paper, the framework of a new method for determining ecosystem-based water level regimes (WLRs) for lake protection is proposed. First, historical WLRs are divided into several sub-stages. Then, ecosystem statuses corresponding to different WLRs are quantified and compared. Finally, parameters of optimal and acceptable WLRs are used to determine water level management goals. The proposed method was applied to Baiyangdian Lake, the largest shallow lake in the North China Plain, to test its effectiveness. Results showed that to protect the ecosystem at the optimal status, 50% of the parameter values should fall within the range of the 25th and 75th percentiles of Stage I; and to protect the ecosystem from reverse succession, 50% of the water level parameter values should fall within the range of the 25th and 75th percentiles of Stage II. This method takes ecosystem status into account, and has high practicability in water resources management.  相似文献   

2.
Abstract Possible effects of increased atmospheric concentrations of CO2 on forest ecosystems are discussed and as an example a simulation case study using a set of mixed-age and mixed-species forest stand models is presented. The responses of the models to a simple scenario (uniform growth increase of all trees as a response to CO2 enrichment) include increases in biomass that are considerably less than the increases in growth rate of the trees. These simulations and more general discussion of the possible effects of increased photosynthetic production identify the problem of scaling-up small time-scale and space-scale measurements of plant responses to CO2 enrichment to the ecosystem level.  相似文献   

3.
Ecological complexity of species interactions and habitat heterogeneity creates and maintains biodiversity at a trophic level in an ecosystem. This biodiversity simultaneously serves as raw material on which selective forces for organizing ecosystems operate. As a result of this organization process, differences in structure and functioning of ecosystems (diversity at ecosystem level) are generated. Although understanding diversity at the ecosystem level has attracted great interest, recent theoretical advances toward this aim have not been fully appreciated yet. Following Higashi et al. (1993), this report presents a theoretical framework that deals with the organization process of an ecosystem as a consequence of the interactions among its biotic components and their modification of ecological traits. Specifically, the ecosystem organization process of a terrestrial ecosystem is analyzed, including primary producers and decomposers. This model sheds new insight into the differences between temperate and tropical forest ecosystems.  相似文献   

4.
We studied the responses of an aquatic microcosm in two different eutrophic conditions to elevated atmospheric CO2concentration. We used microcosms, consisting of Escherichia coli(bacteria), Tetrahymena thermophila(protozoa) and Euglena gracilis(algae), in salt solution with 50 and 500 mg l–1of proteose peptone (eutrophic and hypereutrophic conditions, respectively) under ambient and elevated CO2(1550±100 l l–1) conditions. The density of E. gracilisincreased significantly under elevated CO2in both eutrophic and hypereutrophic microcosms. In the eutrophic microcosm, the other elements were not affected by elevated CO2. In the hypereutrophic microcosm, however, the concentrations of ammonium and phosphate decreased significantly under elevated CO2. Furthermore, the density of T. thermophilawas maintained in higher level than that in the microcosm with ambient CO2and the density of E. coliwas decreased by CO2enrichment. Calculating the carbon biomasses of T. thermophilaand E. colifrom their densities, the changes in their biomasses by CO2enrichment were little as compared with large increase of E. graciliscarbon biomass converted from chlorophyll a. From the responses to elevated CO2in the subsystems of the hypereutrophic microcosm consisting of either one or two species, the increase of E. graciliswas a direct effect of elevated CO2, whereas the changes in the density of E. coliand T. thermophilaand the decreases in the concentration of ammonium and phosphate are considered to be indirect effects rather than direct effects of elevated CO2. The indirect effects of elevated CO2were prominent in the hypereutrophic microcosm.  相似文献   

5.
The studies reviewed in this paper describe the relations of single-cell activity in central motor structures to complex visuomotor tasks and document the fact that various cortical areas process visuomotor information in parallel. Moreover, the studies provide clear evidence that the map in the motor cortex is modifiable and dynamically maintained.  相似文献   

6.
7.
华北平原冬小麦农田生态系统通量贡献区   总被引:1,自引:0,他引:1  
吴东星  李国栋  张茜 《生态学杂志》2017,28(11):3663-3674
利用2013—2014年涡度相关系统观测的华北平原冬小麦农田生态系统通量数据,结合通量贡献区模型FSAM,分析华北平原冬小麦农田生态系统通量贡献区的时空分布特点,对比研究不同大气稳定层结条件和生长期内通量贡献区的分布差异.结果表明: 在主风风向上,冬小麦整个生育期内大气稳定条件下的通量贡献区范围大于不稳定条件下的贡献区范围.在0°~90°主风风向上,生长初期稳定条件下通量贡献区范围比不稳定条件下大17.8 m左右,生长末期稳定条件下的通量贡献区范围比不稳定条件下大11 m左右.生长初期的通量贡献最大值点位置比生长末期距观测点位置远15 m(大气稳定条件)和12.4 m(大气不稳定条件);通量贡献最大值点在稳定条件下比不稳定条件下距观测点位置远5 m(生长初期)和2.4 m(生长末期).在非主风风向上,当风向为90°~180°时,生长初期和生长末期不同大气条件下的最大通量值分别位于距观测点的67.8、53.4和47.0、30.8 m.当风向为270°~360°时,生长初期和生长末期不同大气条件下的最大通量值位于距观测点的58.8、42和41.1、33.1 m.在整个生育期尺度上,观测塔的通量信息主要来自东北、西南和东南方向,其所占比例分别为35.4%、32.5%和19.4%.冬小麦整个生育期内通量贡献区的主要变化发生在观测点东北方向16.0~173.8 m和西南方向14.7~209 m,通量信息全部来源于农田生态系统.两个典型日期的通量贡献区日变化特征明显,通量贡献区范围随大气稳定条件和风向改变而发生变化.夜晚通量信息全部来源于农田生态系统,白天少部分通量信息来源于居民区和果园.本文的定量化结果可为农田生态系统通量贡献区的研究提供依据.  相似文献   

8.
9.
10.
Coexisting plant species usually differ in resource requirements, which may also vary within species at successive demographic stages. Such differences become extremely important during the early life stages, since these are the most critical phases in woody-species recruitment, they depend heavily on resources, and they may determine future community composition. Under a global-change scenario, where climatic conditions, nutrient availability, and habitat characteristics are expected to be altered, it is difficult to predict the way in which plant recruitment will be affected. To understand the impact of different global-change drivers on community recruitment, we sowed a set of species representative of the different successional groups of a complete Mediterranean woody community under field conditions, and studied their emergence, growth, and survival along the main resource gradients of light, water, and nutrients. The light and nutrient gradients followed the natural range of conditions in the study area, but water availability was manipulated to simulate three contrasting climatic scenarios: wetter, drier, and current conditions. Structural equation modelling was used to provide a comprehensive analysis of the factors and relations governing plant recruitment. Overall, seedling emergence was determined directly by light; growth was determined by light and summer soil moisture; and survival was determined by summer soil moisture. Light was the main factor indirectly affecting the demographic stages of all species. However, the magnitude of the direct and indirect relationships varied among species. Particularly, species differed in their response to the expected drier climatic conditions, some (e.g. Pinus sylvestris, Acer opalus) being much more vulnerable than others (e.g. Cytisus scoparius, Salvia lavandulifolia). These differential responses could translate as major shifts in the structure of the overall plant community. Our results support the idea that the analysis of complex relations among essential resources is critical for accurate forecasts of the impact of climate change on community dynamics.  相似文献   

11.
Nienhuis  P. H.  Smaal  A. C.  Knoester  M. 《Hydrobiologia》1994,282(1):575-592
The interest in storm-flood protection has recently gained momentum, owing to the wide international discussion on the impact of sea-level rise on society. The Oosterschelde project is technically and scientifically unique. The storm-surge barrier represents an important breakthrough in marine civil engineering. The project also offered ample opportunities to perform integrated physical, chemical, geological and biological research. Integration of the knowledge gained, raised the entire project to the level of a case study of a changing estuarine ecosystem, and demonstrated the effects of human interference in a non-polluted estuary. Notwithstanding considerable changes in the environment, the Oosterschelde has retained most of its favourable abiotic factors, labeling the estuary as a high quality marine system. The water quality in the post-barrier period more closely resembles that of the North Sea than in the period before. Significant changes in erosion and sedimentation and the consequent redistribution of fine sediments, are continuing. The ecosystem has shown responses to various factors. Effects of severe winters and impact of mussel- and cockle fisheries could be distinguished from other factors. The physical response of the ecosystem to the civil-engineering project could be quantified in terms of changes in habitat availability, maintenance of biological productivity, and restricted maintenance of the carrying capacity as an internationally recognized wetland and fisheries area.  相似文献   

12.
Studies of several transposable genetic elements have pinpointed the importance of the transpososome, a nucleoprotein complex involving the transposon ends and a transposon-encoded enzyme--the transposase--as a key in regulating transposition. Transpososomes provide a precise architecture within which the chemical reactions involved in transposon displacement occur. Data are accumulating that suggest they are dynamic and undergo staged conformational changes to accommodate different steps in the transposition pathway. This has been underpinned by recent results obtained particularly with Tn5, Tn10 and bacteriophage Mu.  相似文献   

13.
Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate.  相似文献   

14.
黄海生态系统高营养层次生物群落功能群及其主要种类   总被引:13,自引:0,他引:13  
张波  唐启升  金显仕 《生态学报》2009,29(3):1099-1111
根据2000年秋季和2001年春季在黄海的两次大面调查,选取生物量占总生物量90%的生物种类为研究对象,分析了黄海生态系统以及3个生态区(冷水团海域、近岸水域和黄海南部水域)春秋两季高营养层次生物群落的功能群组成及其主要种类.结果表明,黄海生态系统高营养层次生物群落包括6个功能群.按生物量排序为:浮游生物食性功能群、底栖动物食性功能群、鱼食性功能群、虾食性功能群、广食性功能群和虾/鱼食性功能群,各功能群营养级范围分别为3.22~3.35、3.30~3.46、4.04~4.50、3.80~4.00、3.38~3.79和4.01.黄海生态系统的主要功能群为浮游生物食性功能群和底栖动物食性功能群,占总生物量的79.6%;主要种类包括13种:小黄鱼、鳀、细巧仿对虾、银鲳、细点圆趾蟹、带鱼、黑鳃梅童、黄鲫、龙头鱼、双斑蟳、细纹狮子鱼、三疣梭子蟹和凤鲚,约占总生物量的70.6%.从不同季节看,春季黄海不同生态区高营养层次的营养级接近,而秋季差别较大,这主要与生物繁殖和索饵群体组成及摄食习性相关.从不同生态区看,黄海冷水团海域高营养层次生物群落以浮游生物食性功能群为主,受季节变化的影响较小,其高营养层次的营养级接近.黄海近岸水域和黄海南部水域高营养层次生物群落功能群组成受季节的影响较大,秋季的营养级均高于春季的营养级.这表明黄海冷水团海域较近岸水域和南部水域稳定,是黄海的一个典型的生态区域.  相似文献   

15.
Abstract

Because funds for possum control are always insufficient to carry out control in all the areas that may require it, it is important that the funds available are allocated to those areas that most deserve it. This can be achieved only by implementing a process that first identifies the resource types likely to be degraded by possums, and secondly ranks areas for control within each resource type. If necessary, high priority areas between resource types can also be ranked. A method for undertaking such a process is described.  相似文献   

16.
Sustainability of ecosystem services to humanity will depend on knowledge of how ecosystems work in their natural states, which can then be carried over to managed states. The objective of this paper is to describe four properties of ecosystems taken as natural conditions to be maintained under exploitation. Three of these are design properties: near-steady-state or extremal dynamics, dominance of indirect effects, and positive utility in network organization. One is a regulatory property: distributed multivariable control. The methodology of the paper is mathematical modeling. The design properties are drawn from the inherent formalism in models. The control property is demonstrated by manipulating model parameters to achieve a management goal. The results show that: (1) natural ecosystems operate near, but not at, steady states or extrema, and ecosystems exploited for human purposes should be similarly maintained (near-steady-state imperative); (2) indirect effects are dominant in natural ecosystem networks, and should be taken into account in managing ecosystems for human benefits (nonlocal imperative); (3) natural ecosystems enhance positive relationships among their constituents, and ecosystems maintained for human services should be managed to maximize their expression of mutualistic and synergistic network properties (nonzero imperative); and (4) natural ecosystems are regulated by checks and balances distributed across many control variables in interactive networks, so that obtaining human services from ecosystems should similarly be through coordinated use of many, not few, control variables (multifactorial control imperative). The conclusion from these results is that ecosystems under natural conditions evidence organizational properties evolved over evolutionary time, and management for sustainable extraction of ecosystem services should seek to preserve and emulate these properties in the new exploited states.  相似文献   

17.
ER quality control: towards an understanding at the molecular level.   总被引:24,自引:0,他引:24  
The process of 'quality control' in the endoplasmic reticulum (ER) involves a variety of mechanisms that collectively ensure that only correctly folded, assembled and modified proteins are transported along the secretory pathway. In contrast, non-native proteins are retained and eventually targeted for degradation. Recent work provides the first structural insights into the process of glycoprotein folding in the ER involving the lectin chaperones calnexin and calreticulin. Underlying principles governing the choice of chaperone system engaged by different proteins have also been discovered.  相似文献   

18.
19.
Leppek K  Schott J  Stoecklin G 《EMBO reports》2011,12(12):1214-1216
At the EMBO Conference on 'Protein Synthesis and Translational Control' held in Heidelberg in September 2011, scientists shared their latest findings on the structure and function of the ribosome, mRNA-specific regulation of translation and the numerous quality control mechanisms that ensure accurate protein synthesis.  相似文献   

20.
Landscape‐ and community‐level CO2 measurements were made at a subarctic sedge fen near Churchill Manitoba during the 1997 growing season. Climatic conditions were warmer and drier than the 30‐y normal. Landscape‐scale micrometeorological measurements indicated that the wetland gained 49 g CO2 m?2 during the growing season. Chamber‐scale measurements from the main vegetation community types showed that small hummocks (Carex spp. sites) dominated the CO2 exchange, yielding an effective scaling factor of 70%. Scaled parameters of two algorithms describing photosynthesis and respiration for each community type show strong similarity to those derived at the landscape level. Scaling photosynthesis, respiration, and net ecosystem CO2 exchange from the community to landscape‐level over the season is within the maximum probable error of each methodological approach and helps substantiate the 1997 CO2 budget. We explore the equilibrium response of net ecosystem CO2 exchange of this fen to climatic change by examining the feedback of water table position on vegetation distribution and nitrogen availability. Based on the effective scaling factors computed for each community type, we hypothesize that a small decrease in mean water table position could nearly triple the net uptake of CO2 at this wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号