首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross‐ecosystem material flows, in the form of inorganic nutrients, detritus and organisms, spatially connect ecosystems and impact food web dynamics. To date research on material flows has focused on the impact of the quantity of these flows and largely ignored their elemental composition, or quality. However, the ratios of elements like carbon, nitrogen and phosphorus can influence the impact material flows have on food web interactions through stoichiometric mismatches between resources and consumers. The type and movement of materials likely vary in their ability to change stoichiometric constraints within the recipient ecosystem and materials may undergo changes in their own stoichiometry during transport. In this literature review we evaluate the importance of cross‐ecosystem material flows within the framework of ecological stoichiometry. We explore how movement in space and time impacts the stoichiometry of material flow, as these transformations are essential to consider when assessing the ability of these flows to impact food web productivity and ecosystem functioning. Our review suggests that stoichiometry of cross‐ecosystem material flows are highly dynamic and undergo changes during transport across the landscape or from human influence. These material flows can impact recipient organisms if they change stoichiometry of the abiotic medium, or provide resources that have a different stoichiometry to in situ resources. They might also alter consumer excretion rates, in turn altering the availability of nutrients in the recipient ecosystem. These alterations in stoichiometric constraints of recipient organisms can have cascading trophic effects and shape food web dynamics. We highlight significant gaps in the literature and suggest new avenues for research that explore how cross‐ecosystem material flows impact recipient ecosystems when considering differences in stoichiometric quality, their movement through the landscape and across ecosystem boundaries, and the nutritional constraints of the recipient organisms.  相似文献   

2.
A soil community food web model was used to improve the understanding of what factors govern the mineralisation of nutrients and carbon and the decay of dead organic matter. The model derives the rates of C and N mineralisation by organisms by splitting their uptake rate of food resources into a rate at which faeces or prey remains are added to detritus, a rate at which elements are incorporated into biomass, and a rate at which elements are released by organisms as inorganic compounds. The functioning of soil organisms in the mineralisation of C and N was modelled in the soil horizon of a Scots pine forest. The organic horizon was divided into three distinct layers, representing successive stages of decay, i.e. litter, fragmented litter, and humus. Each of the layers had a different, quantitative, biota composition. For each layer the annual C and N mineralisation rates were simulated and compared to observed C and N mineralisation rates from organic matter in stratified litterbags. Simulated C and N mineralisation was relatively close to measured losses of C and N, but the fit was not perfect. Discrepancies between the observed and predicted mineralisation rates are discussed in terms of variation in model parameter values of those organisms that showed the highest contribution to mineralisation rates. The measured, and by the model predicted, significant decrease in mineralisation rates down the profile was not explained by the biomass of the primary decomposers and only partly by the total food web biomass. Modelling results indicated that indirect effects of soil fauna, due to trophic interactions with their resources, are an important explanatory factor. In addition, the analyses suggest that community food web structure is an important factor in the regulation of nutrient mineralisation. The model provided the means to evaluate the contribution of functionally defined groups of organisms, structured in a detrital food web, to losses of C and N from successive decay stages.  相似文献   

3.
Soil multitrophic interactions transfer energy from plants as the predominant primary producer to communities of organisms that occupy different positions in the food chain and are linked by multiple ecological networks, which is the soil food web. Soil food web sequesters carbon, cycles nutrients, maintains soil health to suppress pathogens, helps plants tolerate abiotic and biotic stress, and maintains ecosystem resilience and sustainability. Understanding the influence of climate change on soil multitrophic interactions is necessary to maintain these essential ecosystem services. But summarising this influence is a daunting task due to a paucity of knowledge and a lack of clarity on the ecological networks that constitute these interactions. The scant literature is fragmented along disciplinary lines, often reporting inconsistent findings that are context and scale‐dependent. We argue for the differentiation of soil multitrophic interactions along functional and spatial domains to capture cross‐disciplinary knowledge and mechanistically link all ecological networks to reproduce full functionalities of the soil food web. Distinct from litter mediated interactions in detritosphere or elsewhere in the soil, the proposed ‘pathogen suppression’ and ‘stress tolerance’ interactions operate in the rhizosphere. A review of the literature suggests that climate change will influence the relative importance, frequency and composition of functional groups, their trophic interactions and processes controlling these interactions. Specific climate change factors generally have a beneficial influence on pathogen suppression and stress tolerance, but findings on the overall soil food web are inconsistent due to a high level of uncertainty. In addition to an overall improvement in the understanding of soil multitrophic interactions using empirical and modelling approaches, we recommend linking biodiversity to function, understanding influence of combinations of climatic factors on multitrophic interactions and the evolutionary ecology of multitrophic interactions in a changing climate as areas that deserve most attention.  相似文献   

4.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

5.
The soil is probably the most diverse habitat there is, with organisms ranging in sizes from less than 1 μm to several metres in length. However, it is increasingly evident that we know little about the interactions occurring between these organisms, the functions that they perform as individual species, or together within their different feeding guilds. These interactions between groups of organisms and physical and chemical processes shape the soil as a habitat and influence the nature of the soil food web with consequences for the above‐ground vegetation and food web. Protists are known as one of the most abundant groups of bacterivores within the soil; however, they are also consumers of a number of other food sources. Even though they are responsible for a large proportion of the mineralisation of bacterial biomass and have a large impact on the C and N cycles within the soil they are regularly overlooked when investigating the complete soil food web. Recently, stable isotopes have been used to determine trophic interactions and here we describe how this technique has been used to highlight linkages between protists and the soil food web.  相似文献   

6.
GUY WOODWARD 《Freshwater Biology》2009,54(10):2171-2187
1. Dramatic advances have been made recently in the study of biodiversity–ecosystem functioning (B-EF) relations and food web ecology. These fields are now starting to converge, and this fusion has the potential to improve our understanding of how environmental stressors modulate ecosystem processes and the supply of 'goods and services'.
2. Food web structure and dynamics can exert particularly strong influences on B-EF relations in fresh waters, as consumer–resource interactions (e.g. trophic cascades) are often more important than horizontal interactions within trophic levels. For instance, many freshwater food webs are size structured, with large organisms tending to occupy the higher trophic levels and often exerting powerful effects on ecosystem processes. However, because they are also vulnerable to perturbations, non-random losses of these large taxa can alter both food web structure and ecosystem functioning profoundly.
3. Recently, the focus of food web research has shifted away from exploring patterns, towards developing an understanding of processes (e.g. quantifying fluxes of individuals, biomass, energy, nutrients) and how the two interact. Many of the best-characterized food webs are from fresh waters, and these ecosystems are now being used to address some of the shortcomings of earlier B-EF studies. I have identified several key gaps in our current knowledge and highlighted potentially fruitful avenues of future B-EF and food web research.
4. A major challenge for this newly emerging research is to place it within a unified theoretical framework. The application of metabolic theory and ecological stoichiometry may help to achieve this goal by considering biological systems within the constraints imposed upon them by physical and chemical laws.  相似文献   

7.
Inferring trophic transfers from pulse-dynamics in detrital food webs   总被引:2,自引:0,他引:2  
In semiarid ecosystems, decomposers are active during numerous short periods following rainfall events, and most inactive in the intervening dry periods. Many studies concern season-long dynamics of decomposer populations, but less is known of the short-term dynamics during wet periods. These short-term dynamics may provide the key to understanding interactions between microbes and fauna.The dynamics of populations in the detrital food web were followed after wetting large intact soil cores that had been removed from native shortgrass steppe, winter wheat, and fallow plots. The cores were sampled over a ten day period for bacteria, fungi, protozoa, and various functional groups of microarthropods and nematodes. The native sod had appreciably greater biomass of fungi, nematodes and microarthropods than did the cultivated plots, but there was no difference in bacteria or protozoans. The observed dynamics after wetting were different in two experiments which differed in temperature, soil water level, and the initial sizes of the populations. These results were interpreted in relation to a model of the structure of the detrital food web, and estimates were made of the rates of trophic transfers in the web. Consumption by protozoa was great enough for them to account for bacterial turnover, but consumption by fungivorous nematodes and microarthropods appeared to be too small to account for fungal turnover.Progress in understanding the dynamics of detrital food webs requires a better definition of the functional groups of soil organisms, their resources, predators and population parameters, and the effects of soil structure and water content on trophic relationships.  相似文献   

8.
重金属污染土壤中生物间相互作用及其协同修复应用   总被引:6,自引:1,他引:5  
土壤是人类赖以生存的物质基础。我国土壤重金属污染状况不容乐观,给人类健康构成严重威胁。生物修复重金属污染土壤被广泛认为是可持续的修复技术,但当前仍存在修复效率不高的科学瓶颈问题。土壤中生活着丰富的微生物、植物和动物,且这些生物之间存在着复杂的相互作用,并且通过物质循环和能量传递形成了错综复杂的食物网联系。土壤生物间的相互作用能深刻影响土壤中污染物的迁移转化和生物修复的效率,多元生物协同的修复技术集合了单一生物修复方法的优势,具有强化生物修复效果的巨大潜力。文中综述了土壤中微生物-植物-动物之间的相互作用,及其对土壤重金属迁移转化和生物修复效果的影响,并对定向调控土壤食物网结构、提高重金属污染土壤的生物修复效果、建立基于食物网的多元生物协同修复技术进行了展望。  相似文献   

9.
Predators often exert multi-trophic cascading effects in terrestrial ecosystems. However, how such predation may indirectly impact interactions between above- and below-ground biota is poorly understood, despite the functional importance of these interactions. Comparison of rat-free and rat-invaded offshore islands in New Zealand revealed that predation of seabirds by introduced rats reduced forest soil fertility by disrupting sea-to-land nutrient transport by seabirds, and that fertility reduction in turn led to wide-ranging cascading effects on belowground organisms and the ecosystem processes they drive. Our data further suggest that some effects on the belowground food web were attributable to changes in aboveground plant nutrients and biomass, which were themselves related to reduced soil disturbance and fertility on invaded islands. These results demonstrate that, by disrupting across-ecosystem nutrient subsidies, predators can indirectly induce strong shifts in both above- and below-ground biota via multiple pathways, and in doing so, act as major ecosystem drivers.  相似文献   

10.
BACKGROUND: Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. SCOPE AND AIMS: We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance(2)/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. CONCLUSIONS: Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root-organism interactions in the field.  相似文献   

11.
Aquatic food web models typically treat the constituent trophic levels as static elements interacting with one another and the environment. Dynamic biological stoichiometry has relaxed this assumption and considers evolutionary responses in said elements. The incorporation of organismal response in food web models holds promise for a more realistic portrayal of ecosystem dynamics. Recent advances in aquatic ecology pinpoint the importance of highly unsaturated fatty acids (HUFAs) on food web interactions and ecosystem resilience. In this study, we utilized a HUFA explicit submodel in conjunction with a limiting nutrient–phytoplankton–zooplankton–detritus (NPZD) mathematical system to incorporate elements of the physiology of individual animals into the context of plankton dynamics. Our HUFA-augmented plankton model provided a realistic platform to examine functional properties and physiological strategies that modulate resource procurement in different trophic environments and to effectively link variability at the organismal level with ecosystem-scale patterns. First, we were able to illustrate the implications of the filling-cup hypothesis, in which species’ fitness stems from dynamic HUFA turnover rates in response to bottom-up stresses. We then examined an evolutionary hypothesis of consumer fitness dependence on HUFA quota management strategies, whereby adaptive individuals with low HUFA minimum and optimum requirements gain competitive advantage. Several studies have reported higher HUFA concentrations in consumers than producers, and our results suggest that this pattern could be driven by a combination of conservative turnover and elevated bioconversion rates. Oligotrophic settings showed strong reliance upon exogenous phosphorus subsidies and frequently yielded inverted food web biomass distributions. With the prevalence of eutrophic conditions, consumer growth is primarily controlled by HUFA availability, and the associated biochemical limitation can ultimately result in patterns of algal accumulation. Finally, our study discusses directions to improve the representation of the producer–grazer interactions and thus advance our understanding of the factors that determine the flow of nutrients and energy to the higher trophic levels.  相似文献   

12.
Ectomycorrhizal fungi exhibit high diversity even in small monoculture forests. Roughly 20 to 35 species typically occupy such sites. Explanations for this diversity can be based on resource partitioning, disturbance, competition, or interaction with other organisms. Mycorrhizal fungi compete for two general classes of resources: host-derived carbon and soil or detritus derived mineral nutrients. Both types of resources are arrayed in space (e.g., soil depth, distance from tree) and time (e.g., season, host successional series). Some species seem to be partitioned in space and time at these scales, but the question of how widespread these patterns are remains largely unanswered. Mineral resources are distributed in discrete substrates in soil, litter, and within other soil microorganisms; the biochemical diversity exhibited by fungi may translate into differences in access to these resources among species. Small-scale natural disturbances that sever roots, mix soil horizons and litter layers, or change local pH and nutrient availability, are likely to create additional habitats for ectomycorrhizal fungi. Evidence from fruiting patterns and differences in colonization strategies suggest that such disturbances may be important for establishment of some species. Competitive replacement networks among species have the theoretical potential to increase diversity. The frequency of species replacements, observed co-infections of ectomycorrhizal fungi on single host roots, and high rates of rootlet turn-over all suggest that competition is important, but whether it plays a creative role in maintaining diversity remains to be demonstrated. Other organisms could be important in the maintenance of diversity, if they effect competition among mycorrhizal fungi. Bacteria and soil invertebrates are the most likely groups for such interactions. Technological advances in root observation and PCR methods for indentification of mycorrhizae make many of these theories testable.  相似文献   

13.
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green‐world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown‐world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food‐web dynamics of brown‐world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change.  相似文献   

14.
陈云峰  胡诚  李双来  乔艳 《生态学报》2011,31(1):286-292
土壤食物网在维持生态系统生产力和健康等方面起着重要作用,但现代农业中,化肥农药等外部投入已经改变或部分替代了土壤食物网的功能,由此也造成一系列的环境问题。为了协调作物高产与环境保护的利益,需要对土壤食物网进行管理,使土壤食物网符合作物生长的需要,即建立健康土壤食物网。管理土壤食物网有两种方式:(1)直接方式,即通过调节食物网各个功能群的组成来管理土壤食物网;(2)间接方式,即根据农田土壤食物网以自下而上调控方式为主、强调低营养阶层的资源限制的原理,通过调节碎屑的数量和质量来管理食物网。在这两种调控方式中,都需要对被管理的食物网进行监测,监测的方式也分两种,一种是直接测定食物网各功能群的数量和生物量,另外一种方式即以线虫为工具来反应土壤食物网的结构。  相似文献   

15.
Increased awareness of spatiotemporal variation in species interactions has motivated the study of temporally-resolved food web dynamics at the landscape level. Empiricists have focused attention on cross-habitat flows of materials, nutrients, and prey, largely ignoring the movement of predators between habitats that differ in productivity (and how predators integrate pulses in resource availability over time). We set out to study seasonal variation in food web interactions between mammalian carnivores and their rodent prey along a riparian–upland gradient in semi-arid southeastern Arizona which features both spatial and temporal heterogeneity in resource availability. Specifically, we tested whether mammalian carnivores spill over from productive, near-river habitats into adjacent, desert-scrub habitats; and if they do, to document the effects of this spillover on rodent communities. Furthermore, we examined seasonal variation in top-down effects by measuring changes in carnivore diet and distribution patterns and rodent populations over time. The results indicate that carnivores track seasonally-abundant resources across the landscape, varying both their diet and movement patterns. In turn, desert-scrub rodent population dynamics track seasonal shifts in carnivore habitat use but not resource availability, suggesting that predation plays a role in structuring rodent communities along the San Pedro River. Further evidence comes from data on rodent community composition, which differs between desert-scrub habitats near and far from the river, despite similarities in resource availability. Our data also suggest that seasonal omnivory helps predators survive lean times, increasing their effects on prey populations. Taken together, these results underscore the importance of spatiotemporal variation in species interactions, highlighting the complexity of natural systems and the need for further detailed studies of food web dynamics.  相似文献   

16.
General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.  相似文献   

17.
Habitat coupling in lake ecosystems   总被引:21,自引:0,他引:21  
Lakes are complex ecosystems composed of distinct habitats coupled by biological, physical and chemical processes. While the ecological and evolutionary characteristics of aquatic organisms reflect habitat coupling in lakes, aquatic ecology has largely studied pelagic, benthic and riparian habitats in isolation from each other. Here, we summarize several ecological and evolutionary patterns that highlight the importance of habitat coupling and discuss their implications for understanding ecosystem processes in lakes. We pay special attention to fishes because they play particularly important roles as habitat couplers as a result of their high mobility and flexible foraging tactics that lead to inter-habitat omnivory. Habitat coupling has important consequences for nutrient cycling, predator-prey interactions, and food web structure and stability. For example, nutrient excretion by benthivorous consumers can account for a substantial fraction of inputs to pelagic nutrient cycles. Benthic resources also subsidize carnivore populations that have important predatory effects on plankton communities. These benthic subsidies stabilize population dynamics of pelagic carnivores and intensify the strength of their interactions with planktonic food webs. Furthermore, anthropogenic disturbances such as eutrophication, habitat modification, and exotic species introductions may severely alter habitat connections and, therefore, the fundamental flows of nutrients and energy in lake ecosystems.  相似文献   

18.
应用分解网袋法对辽东栎(Quercus liaotungensis Koize)叶片凋落物分别在暖温带的东灵山,亚热带的神农架,热带的西双版纳为期1-2年的分解和K,Ca,Mg,Fe,P,Cu,Mn等营养元素释放动态进行比较研究。三个气候带下辽东栎叶片凋落物质量损失基本符合Olson的指数模型。但降解速率有很大的差别。气候条件对凋落物的分解和营养元素的释放影响很大,降水量增多,年均温增高,凋落物分解速率相应加快,研究还发现影响营养元素释放的因素除公认的土壤生物(土壤动物和土壤微生物)作用外。对于Fe,Mn等元素遵循的是“化学因素主导”模式。特征在于由于化学螯合作用。其释放过程和凋落物本身失重呈显著负相关。另外,对不同因素占主导的各种分解模式进行了归纳总结。  相似文献   

19.
The concept of limiting nutrients is a cornerstone of theories concerning the control of production, structure and dynamics of freshwater and marine plankton. The current dogma is that nitrogen is limiting in most marine environments while freshwater ecosystems are mostly phosphorus-limited, although evidence of phytoplankton limitation by either N or P has been found in both environments.However, the same considerations apply to the availability of phosphorus in freshwater as to nitrogen in oceans. In resource-limited environments the plankton dynamics depend mostly on the internal mechanisms which act to recycle the limiting nutrient many times over within the surface waters. As the overall productivity increases, this dependence on nutrient regeneration decreases.The relationship between the stock of limiting nutrient, rates of supply and plankton dynamics must therefore be seen in the light of the processes operating within the entire food chain over quite different time scales. There is strong evidence that process-rates are mostly size-dependent and that food web interactions at the microbial level (picophytoplankton, bacteria, microheterotrophs) strongly effect the production of carbon and the regeneration of nutrients in the pelagic zone.  相似文献   

20.
Understanding ecosystem stability is one of the greatest challenges of ecology. Over several decades, it has been shown that allometric scaling of biological rates and feeding interactions provide stability to complex food web models. Moreover, introducing adaptive responses of organisms to environmental changes (e.g. like adaptive foraging that enables organisms to adapt their diets depending on resources abundance) improved species persistence in food webs. Here, we introduce the concept of metabolic adjustment, i.e. the ability of species to slow down their metabolic rates when facing starvation and to increase it in time of plenty. We study the reactions of such a model to nutrient enrichment and the adjustment speed of metabolic rates. We found that increasing nutrient enrichment leads to a paradox of enrichment (increase in biomasses and oscillation amplitudes and ultimately extinction of species) but metabolic adjustment stabilises the system by dampening the oscillations. Metabolic adjustment also increases the average biomass of the top predator in a tri‐trophic food chain. In complex food webs, metabolic adjustment has a stabilising effect as it promotes species survival by creating a large diversity of metabolic rates. However, this stabilising effect is mitigated in enriched ecosystems. Phenotypic plasticity of organisms must be considered in food web models to better understand the response of organisms to their environment. As metabolic rate is central in describing biological rates, we must pay attention to its variations to fully understand the population dynamics of natural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号