首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
固定化全细胞催化可再生油脂合成生物柴油的稳定性   总被引:2,自引:0,他引:2  
酶法合成生物柴油具有反应条件温和、醇用量小、无污染物排放、产物易分离回收等优点,越来越得到关注。全细胞催化剂,无需酶的提取和纯化,减少了酶活损失,有望大幅降低生产成本;Rhizopus oryzae IFO4697全细胞可以有效催化植物油脂合成生物柴油,进一步提高全细胞在催化植物油脂甲醇解制备生物柴油过程中的稳定性,对于工业放大具有重要意义。本实验对固定化全细胞Rhizopus oryzae IFO4697催化植物油脂合成生物柴油的稳定性进行了系统地研究,结果表明:反应体系水含量对于全细胞催化剂的反应活性和催化稳定性有重要影响,5%~15%含水量适宜;研究范围内,载体粒度及干燥方式对稳定性影响不显著;经过戊二醛交联后,全细胞催化油脂甲醇解反应的稳定性显著提高,1200h反应后,仍然可以保持75%的生物柴油得率;真空抽滤直接回用的方式有利于稳定性的保持。在优化条件下,回用20个批次,生物柴油得率可维持在80%。  相似文献   

3.
Development of heterogeneous base catalysts for biodiesel production   总被引:7,自引:0,他引:7  
Investigations were conducted on heterogeneous base catalysts for the transesterification of oil aimed at effective production of biodiesel. Thirteen different kinds of metal oxides containing calcium, barium, magnesium, or lanthanum were prepared as catalysts. Their catalytic activities were tested for transesterification at 60 degrees C with a 6:1 molar ratio of methanol to oil and a reaction time of 10h. The calcium-containing catalysts - CaTiO3, CaMnO3, Ca2Fe2O5, CaZrO3, and CaO-CeO2 - showed high activities and approximately 90% yields of methyl ester. Furthermore, catalytic durability tests were performed by repeating the transesterification reaction several times with the calcium-containing catalysts recovered from the previous reaction mixture. It was found that CaZrO3 and CaO-CeO2 show high durability and have the potential to be used in biodiesel production processes as heterogeneous base catalysts.  相似文献   

4.
为了开发一种无金属有机催化剂用于生物柴油的制备,合成了一系列咪唑(啉)类氮杂环卡宾的二氧化碳加合物(N-heterocyclic carbenes CO2adducts,NHC-CO2),通过加热使其释放游离卡宾,并催化转酯反应制备生物柴油。为了比较催化活性,不同结构的NHC—CO2被用于大豆油的转酯反应中。结果发现:当使用咪唑类催化剂时,产物中甲酯含量大于90%,而当使用咪唑啉型催化剂,甲酯含量不足20%,这说明咪唑类催化剂更适合本研究中的转酯反应。催化剂最佳用量为大豆油的2%(摩尔百分比),最佳醇油比为12∶1。本研究中催化剂前体释放游离卡宾进入反应介质,反应迅速,产品分离简单,是制备生物柴油的有效绿色方法。  相似文献   

5.
Rhizopus oryzae NBRC 4697 was selected from among promising candidates as a biocatalyst for biodiesel production. This microorganism was immobilized on to polyurethane foam coated with activated carbon for reuse, and, for biodiesel production. Vacuum drying of the immobilized cells was found to be more efficient than natural or freeze-drying processes. Although the immobilized cells were severely inhibited by a molar ratio of methanol to soybean oil in excess of 2.0, stepwise methanol addition (3 aliquots at 24-h feeding intervals) significantly prevented methanol inhibition. A packed-bed bioreactor (PBB) containing the immobilized whole cell biocatalyst was then operated under circulating batch mode. Stepwise methanol feeding was used to mitigate methanol inhibition of the immobilized cells in the PBB. An increase in the feeding rate (circulating rate) of the reaction mixture barely affected biodiesel production, while an increase in the packing volume of the immobilized cells enhanced biodiesel production noticeably. Finally, repeated circulating batch operation of the PBB was carried out for five consecutive rounds without a noticeable decrease in the performance of the PBB for the three rounds.  相似文献   

6.
鞠丽萍  陈彬  杨志峰  戴婧  齐静  苏美蓉  刘耕源 《生态学报》2010,30(20):5646-5652
生物柴油作为石油的替代能源之一,已在我国开始了产业化应用。采用能值分析方法对以麻风果油为原料的生物柴油生产全过程,包括麻风树的种植、麻风果实的运输、麻风果油的榨取、果油酯化4个过程以及废水的处理进行了评价,从可更新资源、不可更新资源和购买资源入手构建了能值评价指标体系,并与大豆油为原料的生物柴油、小麦为原料的生物乙醇进行了比较。结果表明麻风果油生物柴油的能值转换率是1.67×1013sej/kg,能值产出率是1.85,环境负载率是6.84,可持续发展指数是0.271。比较得出,麻风果油能值转换率是大豆油的3倍,是生物乙醇的2倍;相同经济能值的投入,麻风果油能值产出率最高,但对环境的依赖程度也更强;可持续发展指数三者相差不大。原料的非食用性方面,与大豆生物柴油、生物乙醇相比,麻风果油有很大的优势,具有发展潜力。  相似文献   

7.
《Process Biochemistry》2010,45(7):1192-1195
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex procedures of isolation, purification and immobilization required for the preparation of immobilized lipase. It has been demonstrated that Rhizopus oryzae IFO 4697 whole cell could catalyze the methanolysis of renewable oils for biodiesel production effectively and glutaraldehyde (GA) cross-linking treatment on whole cell catalyst could improve its stability in the repeated uses. The catalytic performance of cells with GA cross-linking treatment was studied systematically in this paper. The results showed that the treated cells expressed higher methanol tolerance, and high catalytic activity could be maintained with higher ratio of methanol to oil; the operational stability of whole cell catalyst and methanol utilization rate were also considered in optimization of methanol addition strategy. A novel methanol addition strategy was proposed, with which the reaction time could be shortened significantly and a biodiesel yield of 94.1% could be obtained within 24 h reaction; it was also found that with this methanol addition strategy, GA cross-linked whole cell expressed rather good operational stability; the reason for stability improvement was also investigated and should be attributed to less lipase leakage.  相似文献   

8.
Biodiesel consists of fatty acids short chain alkyl esters produced through transesterification and esterification of fats and oils. Production of biodiesel is strongly affected by the purity of raw lipids, and catalysts play important role in these processes. Although direct utilization of impure feedstocks is more economical, their use necessitates development of effective catalysts to overcome hindering influences of impurities. In this study, sulfuryl chloride, thionyl chloride, acetyl chloride, p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, dimethylsulfate and sulfuric acid were investigated as catalysts for the production of biodiesel because acids have higher tolerance to water and free fatty acids in oils and can simultaneously catalyze both the esterification and transesterification reactions. Sulfuryl chloride was found to be an effective catalyst for production of biodiesel from soybean oil, its waste oil and microalgal lipids.  相似文献   

9.
This work describes the enzymatic transesterification of the oil extracted from SCGs for synthesis of biodiesel as a promising alternative to diesel fuels based on petroleum. Biocatalysts from various sources were tested for biodiesel synthesis using coffee oil among which CaCO3- immobilized Staphylococcus aureus and Bacillus stearothermophilus showed the highest conversion yields (61 ± 2.64% and 64.3 ± 1.53%, respectively) in 4 h. In further optimizing reaction parameters, methanol to oil molar ratio, biocatalyst quantity, water content, as well as incubation time and temperature markedly improved oil-to-biodiesel conversion up to 99.33 ± 0.57 % in a solvent free reaction after 12 h at 55 °C. A mixture of inexpensive CaCO3-immobilized bacterial lipases at a 1:1 ratio was the best environment-friendly catalyst for biofuel synthesis as well as the ideal trade-off between conversion and cost. Obtained coffee biodiesel remained stable beyond 40 days at ambient storage conditions and its chemical characteristics were comparable to those of other known biodiesels according to the European requirements (EN14214). Collectively, SCGs, after oil extraction, could be an ideal substrate for the production of an environment-friendly biodiesel by using appropriate mixture of CaCO3-immobilized lipases.  相似文献   

10.
《Process Biochemistry》2010,45(4):514-518
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex preparation procedures of traditional immobilized lipase. During the cultivation of Rhizopus oryzae whole cell catalyst, plant oils are usually added into the medium as inducer for lipase synthesis. It was found that oil inducer not only influenced lipase production, but also led to varied whole cell's catalytic performance. In this paper, the related mechanisms were explored and it was found that the higher unsaturated fatty acid (UFA) was contained in oil inducer, the higher intracellular lipase could be obtained. Different oil inducers also resulted in varied compositions of cell membrane, which was further found to be responsible for the operational stability of the catalyst. Cells with membrane enriched with saturated fatty acid (SFA) exhibited better stability than those enriched with UFA. And further study showed that after glutaraldehyde cross-linking treatment, the operational stability of both UFA enriched cells and SFA enriched cells were enhanced greatly and no loss in cell's catalytic activity was detected after being repeatedly used for 15 batches.  相似文献   

11.
The most common catalysts for biodiesel production are homogeneous basic catalysts. In the present paper, a comparison is made of different basic catalysts (sodium methoxide, potassium methoxide, sodium hydroxide and potassium hydroxide) for methanolysis of sunflower oil. All the reactions were carried out under the same experimental conditions in a batch stirred reactor and the subsequent separation and purification stages in a decanter. The analytical methods included gas chromatography and the determination of fat and oil conventional parameters. The biodiesel purity was near 100 wt.% for all catalysts. However, near 100 wt.% biodiesel yields were only obtained with the methoxide catalysts. According to the material balance of the process, yield losses were due to triglyceride saponification and methyl ester dissolution in glycerol. Obtained biodiesel met the measured specifications, except for the iodine value, according to the German and EU draft standards. Although all the transesterification reactions were quite rapid and the biodiesel layers achieved nearly 100% methyl ester concentrations, the reactions using sodium hydroxide turned out the fastest.  相似文献   

12.
Coffee oil as a potential feedstock for biodiesel production   总被引:2,自引:1,他引:1  
A preliminary evaluation of the feasibility of producing biodiesel using oil extracted from defective coffee beans was conducted as an alternative means of utilizing these beans instead of roasting for consumption of beverage with depreciated quality. Direct transesterifications of triglycerides from refined soybean oil (reference) and from oils extracted from healthy and defective coffee beans were performed. Type of alcohol employed and time were the reaction parameters studied. Sodium methoxide was used as alkaline catalyst. There was optimal phase separation after reactions using both soybean and healthy coffee beans oils when methanol was used. This was not observed when using the oil from defective beans which required further processing to obtain purified alkyl esters. Nevertheless, coffee oil was demonstrated to be a potential feedstock for biodiesel production, both from healthy and defective beans, since the corresponding oils were successfully converted to fatty acid methyl and ethyl esters.  相似文献   

13.
《Process Biochemistry》2007,42(11):1481-1485
Whole cell Rhizopus oryzae (R. oryzae) IFO4697 immobilized within biomass support particles (BSPs) was used as catalyst for biodiesel production in tert-butanol, in which the stability of the catalyst could be enhanced significantly. Different feedstocks (refined, crude and acidified rapeseed oils) were adopted further for biodiesel production in tert-butanol system and it was found that when acidified rapeseed oil was used as feedstocks, the reaction rate and final methyl ester (ME) yield were significantly higher than that of refined and crude rapeseed oil. Major differences among the aforementioned oils were found to be the contents of free fatty acid (FFA), water and phospholipids, which showed varied influences on whole cell mediated methanolysis for biodiesel production. The reaction rate increased with the increase of free fatty acid content in oils; water content had varied influence on reaction rate and biodiesel yield; using adsorbent to remove excessive water could increase biodiesel yield significantly (from 73 to 84%); it was also found interestingly that phospholipids contained in oils could increase the reaction rate to a certain extent.  相似文献   

14.
Utilizing whole cell biocatalyst instead of free or immobilized enzyme is a potential way to reduce the cost of catalyst in lipase-catalyzed biodiesel production. Rhizopus oryzae (R. oryzae) IFO4697 whole cell immobilized within biomass support particles (BSPs) was used for the methanolysis of soybean oil for biodiesel production in this paper. tert-Butanol was demonstrated to be an ideal reaction medium, in which the negative effects caused by substrate methanol could be eliminated effectively. A central composite design was adopted to study the effect of tert-butanol quantity, methanol quantity, water content and dry biomass of the immobilized cell on biodiesel (methyl ester) yield. Each factor was studied in five levels. Using response surface methodology, a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. Biodiesel yield of 72% could be obtained under the optimal conditions and further verification experiments confirmed the validity of the predicted model.  相似文献   

15.
Utilizing whole cell biocatalyst for biodiesel production has some advantages since it can avoid the complex procedures of isolation, purification and immobilization of extracellular lipase. However, during repeated use of Rhizopus oryzae (R. oryzae) IFO4697 whole cell for biodiesel production in solvent-free system, the whole cell exhibited very poor stability; while the whole cell stability has been found to be significantly improved in tert-butanol system compared to that in solvent-free system. The difference in whole cell stability was found to be due to the difference of product accumulation between solvent-free and tert-butanol system. After 144 h reaction, glycerol and methyl ester accumulated in the cell in solvent-free system came up to about 1000 mg/g and 350 mg/g dry biomass, respectively, while in tert-butanol system, glycerol and methyl ester accumulation was kept at a relatively low level, approximately 100 mg/g and 2 mg/g dry biomass, respectively. The accumulated glycerol influenced whole cell stability through mass transfer limitation only, while the accumulated methyl ester influenced whole cell stability through both mass transfer limitation and product inhibition. Further study showed that a slight loss in enzymatic activity in tert-butanol system was caused by protein leakage.  相似文献   

16.
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.  相似文献   

17.
Waste eggshell was investigated in triglyceride transesterification with a view to determine its viability as a solid catalyst for use in biodiesel synthesis. Effect of calcination temperature on structure and activity of eggshell catalysts was investigated. Reusability of eggshell catalysts was also examined. It was found that high active, reusable solid catalyst was obtained by just calcining eggshell. Utilization of eggshell as a catalyst for biodiesel production not only provides a cost-effective and environmental friendly way of recycling this solid eggshell waste, significantly reducing its environmental effects, but also reduces the price of biodiesel to make biodiesel competitive with petroleum diesel.  相似文献   

18.
A rapid and effective method for direct detection, selection and testing of microorganisms able to produce both cell-bound and extracellular true lipases is described. The method is based on formation of clearance zones on turbid solid media with emulsified olive oil around or under the colonies, cell fractions or culture supernatant of lipase-producing organisms. The method was successfully applied for the screening and isolation of microorganisms producing alkaline lipases. The article is published in the original.  相似文献   

19.
An economic feasibility study on four batch processes for the production of biodiesel ranging from 1452 tonnes/year (5000 l/day) to 14,520 tonnes/year (50,000 l/day) is conducted. The four processes assessed are the (1) KOH-W process, characterized by a homogeneous KOH catalyst and hot water purification process; (2) KOH-D process, characterized by a homogeneous KOH catalyst and vacuum FAME distillation process; (3) CaO-W process, characterized by a heterogeneous CaO catalyst and hot water purification process; and (4) CaO-D process, characterized by a heterogeneous CaO catalyst and vacuum FAME distillation process. The costs of the waste cooking oil, fixed costs, and manufacturing costs for producing 7260 tonnes/year (25,000 l/day) of biodiesel by means of the four processes are estimated to be $248–256, $194–232, and $584–641 per tonne of biodiesel, respectively. Among the four processes, the manufacturing costs involved in the CaO-W process are the lowest, in the range from 1452 tonnes/year to 14,520 tonnes/year.  相似文献   

20.
This research compares seven approaches from the literature to the selection of part types for simultaneous production over the next time horizon. A flexible approach to the selection of part types and the simultaneous determination of their mix ratios so as to balance aggregate machine workloads is presented. Constraints on tool magazine capacity are considered. Simulation studies are conducted on realistic, detailed models of flexible flow systems (FFSs) configured as pooled machines of equal sizes. The simulated settings are constructed to evaluate the impact of such factors as blocking, transportation, buffer utilizations, and fixture requirements and limitations of various types. One of the goals of this study is to encourage industry to relax, for those FMS types for which the procedure is appropriate, what is essentially an artificial constraint: that tool changing be isolated in time, to a period between batches. For other types of FMSs, batching may be appropriate. The results indicate that using the flexible approach enables the system to be more highly utilized. It is also observed that the batching approaches tend to require more fixtures of each type than the flexible approach. The system utilizations for the batching approaches seem to be more sensitive to restrictions on the number of fixtures of each type. Further research needs are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号