首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many ectotherms show crossing growth trajectories as a plastic response to rearing temperature. As a result, individuals growing up in cool conditions grow slower, mature later, but are larger at maturation than those growing up in warm conditions. To date, no entirely satisfactory explanation has been found for why this pattern, often called the temperature‐size rule, should exist. Previous theoretical models have assumed that size‐specific mortality rates were most likely to drive the pattern. Here, I extend one theoretical model to show that variation in size‐fecundity relationships may also be important. Plasticity in the size‐fecundity relationship has rarely been considered, but a number of studies show that fecundity increases more quickly with size in cold environments than it does in warm environments. The greater increase in fecundity offsets costs of delayed maturation in cold environments, favoring a larger size at maturation. This can explain many cases of crossing growth trajectories, not just in relation to temperature.  相似文献   

2.
Sexual selection     
Competition over mates takes many forms and has far-reaching consequences for many organisms. Recent work suggests that relative reproductive rates of males and females, sperm competition and quality variation among mates affect the strength of sexual selection. Song, other display, body size, visual ornaments and material resource offerings are often sexually selected. There is much empirical evidence of mate choice, and its evolution is clarified by mathematical models. Recent advances in theory also consider costs of choice, effects of deleterious mutations, fast and slow evolution of preferences and preferred traits, and simultaneous preferences for several traits. Contests over mates are important; so is sperm competition, scrambles, endurance rivalry, and coercion. The latter mechanisms have received less attention than mate choice. Sexual selection may explain puzzling aspects of plant pollination biology.  相似文献   

3.
We investigate harvest-induced adaptive changes in age and size at maturation by modelling both plastic variation and evolutionary trajectories. Harvesting mature individuals displaces the reaction norm for age and size at maturation toward older ages and larger sizes and rotates it clockwise, whereas harvesting immature individuals has the reverse qualitative effect. If both immature and mature individuals are harvested, the net effect has approximately the same trend as when harvesting immature individuals only. This stems from the sensitivity of the evolutionary response, which depends on the maturity state of harvested individuals, but also on the type of harvest mortality (negatively or positively density dependent, density independent) and the value of three life-history parameters (natural mortality, growth rate and the trade-off between growth and reproduction). Evolutionary changes in the maturation reaction norm have strong repercussions for the mean size and the density of harvested individuals that, in most cases, result in the reduction of biomass--a response that population dynamical models would overlook. These results highlight the importance of accounting for evolutionary trends in the long-term management of exploited living resources and give qualitative insights into how to minimize the detrimental consequences of harvest-induced evolutionary changes in maturation reaction norms.  相似文献   

4.
Understanding intraspecific geographic variation in animal signals poses a challenging evolutionary problem. Studies addressing geographic variation typically focus on signals used in mate-choice, however, geographic variation in intrasexual signals involved in competition is also known to occur. In Polistes dominulus paper wasps, females have black facial spots that signal dominance: individuals wasps with more complex 'broken' facial patterns are better fighters and are avoided by rivals. Recent work suggests there is dramatic geographic variation in these visual signals of quality, though this variation has not been explicitly described or quantified. Here, we analyze variation in P. dominulus signals across six populations and explore how environmental conditions may account for this variation. Overall, we found substantial variation in facial pattern brokenness across populations and castes. Workers have less broken facial patterns than gynes and queens, which have similar facial patterns. Strepsipteran parasitism, body size and temperature are all correlated with the facial pattern variation, suggesting that developmental plasticity likely plays a key role in this variation. First, the extent of parasitism varies across populations and parasitized individuals have lower facial pattern brokenness than unparasitized individuals. Second, there is substantial variation in body size across populations and a weak but significant relationship between facial pattern brokenness and body size. Wasps from populations with smaller body size (e.g. Italy) tend to have less broken facial patterns than wasps from populations with larger body size (e.g. New York, USA). Third, there is an apparent association between facial patterns and climate, with wasp from cooler locations tending to have higher facial pattern brokenness than wasps from warmer locations. Additional experimental work testing the causes and consequences of facial pattern variation will be important, as geographic variation in signals has important consequences for the evolution of communication systems and social behavior.  相似文献   

5.
Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control.  相似文献   

6.
The relationship between body size and the probability of maturing, often referred to as the probabilistic maturation reaction norm (PMRN), has been increasingly used to infer genetic variation in maturation schedule. Despite this trend, few studies have directly evaluated plasticity in the PMRN. A transplant experiment using white-spotted charr demonstrated that the PMRN for precocious males exhibited plasticity. A smaller threshold size at maturity occurred in charr inhabiting narrow streams where more refuges are probably available for small charr, which in turn might enhance the reproductive success of sneaker precocious males. Our findings suggested that plastic effects should clearly be included in investigations of variation in PMRNs.  相似文献   

7.
The discussion of a population's minimum viable size provides a focus for the study of ecological and genetic factors that influence the persistence of a threatened population. There are many causes of extinction and the fate of a specific population cannot generally be predicted. This uncertainty has been dealt with in two ways: through stochastic demographic models to determine how to minimize extinction probabilities; and through population genetic theory to determine how best to maintain genetic variation, in the belief that the ability to evolve helps buffer a population against the unknown. Recent work suggests that these two very different approaches lead to very similar conclusions, at least under panmictic conditions. However, defining the ideal spatial distribution for an endangered species remains an important challenge.  相似文献   

8.
Sex-specific plasticity in body size has been recently proposed to cause intraspecific patterns of variation in sexual size dimorphism (SSD). We reared juvenile male and female Mediterranean tarantulas (Lycosa tarantula) under two feeding regimes and monitored their growth until maturation. Selection gradients calculated across studies show how maturation size is under net stabilizing selection in females and under directional selection in males. This pattern was used to predict that body size should be more canalized in females than in males. As expected, feeding affected male but not female maturation size. The sex-specific response of maturation size was related to a dramatic divergence between subadult male and female growth pathways. These results demonstrate the existence of sex-specific canalization and resource allocation to maturation size in this species, which causes variation in SSD depending on developmental conditions consistent with the differential-plasticity hypothesis explaining Rensch's Rule.  相似文献   

9.
Previous empirical and theoretical work has focused on how feedingterritory size is governed by average levels of food availabilityand intrusion pressure; the potentially important effects ofvariability have not yet been studied in detail. Here I incorporatevariation in food availability and intrusion pressure in somesimple optimality models of territory size. The results showthat the possible effects of variability are diverse, includingboth increase and decrease in territory size. And in some cases,variation in food availability produces qualitatively differenteffects than variation in intrusion pressure.  相似文献   

10.
The time between infection and the onset of reproduction (maturation time) is a key determinant of body size, fecundity and generation time in parasitic nematodes. An optimality model for maturation time is developed centred on prematurational growth, the duration of which has opposing consequences for fecundity and for survival to reproductive age. The maturation time favoured by natural selection is found to be inversely proportional to prematurational mortality rate. The product of maturation time and mortality rate is predicted to be an invariant number equal to the allometric slope linking daily fecundity to maturation time. Predictions are tested using comparative data on mammalian gastrointestinal nematode taxa. Half the cross-species variation in prepatent period (the time from infection until propagules are shed from the host) is accounted for by this adaptive trade-off hypothesis, even though many biological details are not explicitly modelled. These results are discussed in the light of previous studies and in the context of general models of life history evolution.  相似文献   

11.
Viruses are intracellular pathogens responsible for a vast number of human diseases. Due to their small genome size, viruses rely primarily on the biosynthetic apparatus of the host for their replication. Recent work has shown that the molecular chaperone Hsp90 is nearly universally required for viral protein homeostasis. As observed for many endogenous cellular proteins, numerous different viral proteins have been shown to require Hsp90 for their folding, assembly, and maturation. Importantly, the unique characteristics of viral replication cause viruses to be hypersensitive to Hsp90 inhibition, thus providing a novel therapeutic avenue for the development of broad-spectrum antiviral drugs. The major developments in this emerging field are hereby discussed. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

12.
Body size is widely believed to affect the occurrence of sexual maturation. Recent studies have used changes in the age-specific body size at which the probability of maturing is 50%, a feature of probabilistic reaction norms, to quantify purported evolution of life histories. However, body size results from a combination of growth rates during successive developmental stages. Therefore, to understand the evolution of the maturation schedule, it is necessary to comprehend the relationships among body size, growth history, and maturation schedule. We examined the relationships among body size, previous growth history, and maturation probability in chum salmon (Oncorhynchus keta). In this study, previous growth history was estimated from yearly specific growth increments that provide information describing body size. Previous growth history was found to be more closely linked to maturation probability than body size. The most recent growth condition was the most important factor affecting whether a fish matured during the subsequent breeding season. Because individuals of similar body size and same age can have different growth histories, the relationship between body size and maturation probability could be plastically modified by growth history. This may violate an assumption required to infer evolution, namely that size-related maturation trends in probabilistic reaction norms are immune to growth history.  相似文献   

13.
The cellular mechanisms used to generate sufficient microtubule polymer mass to drive the assembly and function of the mitotic spindle remain a matter of great interest. As the primary microtubule nucleating structures in somatic animal cells, centrosomes have been assumed to figure prominently in spindle assembly. At the onset of mitosis, centrosomes undergo a dramatic increase in size and microtubule nucleating capacity, termed maturation, which is likely a key event in mitotic spindle formation. Interestingly, however, spindles can still form in the absence of centrosomes calling into question the specific mitotic role of these organelles. Recent work has shown that the human centrosomal protein, Cep192, is required for both centrosome maturation and spindle assembly thus providing a molecular link between these two processes. In this article, we propose that Cep192 does so by forming a scaffolding on which proteins involved in microtubule nucleation are sequestered and become active in mitotic cells. Normally, this activity is largely confined to centrosomes but in their absence continues to function but is dispersed to other sites within the cell.  相似文献   

14.
Do male two-spotted gobies prefer large fecund females?   总被引:3,自引:0,他引:3  
A male mating preference for large females may be expected whenfemale size is correlated with fecundity. We tested for sucha preference in a fish, the two-spotted goby (Gobiusculus flavescens,Gobiidae), for which a male preference for colorful femaleshas been demonstrated. We offered males a choice between twostimulus females of different size, controlling for female colorand stage of egg maturation. We also analyzed the relationshipbetween size and fecundity (total number of eggs in the clutch)by allowing females of different size to spawn in a controlledenvironment. Female length explained 37% of the variation infecundity, but males showed only a weak preference for largefemales. We compared the coefficient of variation (CV) in fecunditybetween female two-spotted gobies and other fish species forwhich male preferences for large females have been reported.The CV in fecundity in the two-spotted goby was among the lowest.We suggest that the low variation limits the potential fecunditybenefit to be gained by a male selecting females on the basisof size alone. Our study emphasizes the importance of the variationin partner quality for the direction and the strength of matepreferences, as suggested by theoretical models.  相似文献   

15.
Synopsis Widespread male body size variation in P. latipinna appears to be attributable to genetic variation in the size at maturation. The contribution of adult growth needs to be assessed because adult growth rates may vary with size at maturation and local environment. In our laboratory study we examined adult growth patterns as a function of size at maturation and juvenile experience (favorable or unfavorable conditions). In our field study we assessed adult growth as a function of initial size and environmental condition (using males in enclosures in contrasting habitats). Adult growth rates in the laboratory were an order of magnitude higher than rates observed in field enclosures. Growth rates varied with male size, increasing with increasing male size in the laboratory study but decreasing with increasing male size in the field study. The laboratory results alone would have cast considerable doubt on the ability to interpret size distributions of field-collected males, but the field results indicate that adult growth is sufficiently low that it can be ignored as a source of body size variation within and among populations.  相似文献   

16.
Aquatic invertebrates are usually larger at maturity when water temperatures are lower. For the freshwater cladoceran Daphnia, it has been suggested that a threshold size must be attained to initiate maturation, which results two instars later in the deposition of eggs into the brood chamber. This threshold size is believed to temperature on maturation threshold body-length in Daphnia magna. Daphnids were raised from birth to maturity under three constant-temperature regimes (12°C, 16°C, 22°C), and two food-level conditions. Animals were measured daily, and a body-length based maturation threshold determined for each individual. We demonstrate that mean maturation threshold length is negatively correlated with ambient water temperature. Further, daphnids with a larger threshold length tended to be larger at maturity. A maturation threshold linked to body length suggests that reduced variation in size at maturity is adaptive, even at the cost of additional variation in instar number or age at maturity.  相似文献   

17.
Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra- and inter-specific interactions. Recent experimental work indicates that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and total population density. Under what situations is this simplification appropriate? Why might intraspecific variation alter ecological dynamics? In this review we synthesize recent theory and identify six general mechanisms by which trait variation changes the outcome of ecological interactions. These mechanisms include several direct effects of trait variation per se and indirect effects arising from the role of genetic variation in trait evolution.  相似文献   

18.
19.
The endosomal pathway is responsible for plasma membrane cargo uptake, sorting, and, in many cases, lysosome targeting. Endosome maturation is complex, requiring proper spatiotemporal recruitment of factors that regulate the size, maturity, and positioning of endosomal compartments. In animal cells, it also requires trafficking of endosomes on microtubules. Recent work has revealed the presence of contact sites between some endosomes and the endoplasmic reticulum (ER). Although these contact sites are believed to have multiple functions, the frequency, dynamics, and physical attributes of these contacts are poorly understood. Here we use high-resolution three-dimensional electron microscopy to reveal that ER tubules wrap around endosomes and find that both organelles contact microtubules at or near membrane contact sites. As endosomes traffic, they remain bound to the ER, which causes the tubular ER to rearrange its structure around dynamic endosomes at contact sites. Finally, as endosomes transition through steps of maturation, they become more tightly associated with the ER. The major implication of these results is that endosomes mature and traffic while coupled to the ER membrane rather than in isolation.  相似文献   

20.
Reaction norms for age and size at maturity are being analyzed to answer important questions about the evolution of life histories. A new statistical method is developed in the framework of time-to-event data analysis, which circumvents shortcomings in currently available approaches. The method emphasizes the estimation of age- and size-dependent maturation rates. Individual probabilities of maturation during any given time interval follow by integrating maturation rate along the growth curve. The integration may be performed in different ways, over ages or sizes or both, corresponding to different assumptions on how individuals store the operational history of the maturation process. Data analysis amounts to fitting generalized nonlinear regression models to a maturation status variable. This technique has three main advantages over existing methods: (1) treating maturation as a stochastic process enables one to specify a rate of maturation; (2) age and size at which maturation occurs do not have to be observed exactly, and bias arising from approximations and interpolations is avoided; (3) ages at which sizes are measured and maturation status are observed can differ between individuals. An application to data on the springtail Folsomia candida is presented. Models with age-dependent integration of maturation rates were preferred. The analysis demonstrates a significant size dependence of the maturation rate but no age dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号