首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物群落的生物多样性及其可入侵性关系的实验研究   总被引:16,自引:1,他引:16       下载免费PDF全文
 生物入侵已经成为一个普遍性的环境问题,并为许多学者所关注。尽管一些理论研究和观察表明生物多样性丰富的群落不容易受到外来种的入侵,但后来有些实验研究并没能证实两者的负相关性,多样性 可入侵性假说仍然是入侵生态学领域争论比较多的一个焦点。人为构建不同物种多样性和物种功能群多样性(C3 禾本科植物、C4植物、非禾本科草本植物和豆科植物)梯度的小尺度群落,把其它影响可入侵性的外在因子和多样性效应隔离开来,研究入侵种喜旱莲子草(Alternanthera philoxeroides)在不同群落里的入侵过程来验证多样性 可入侵性及其相关假说。研究结果显示,物种功能群丰富的群落可入侵程度较低,功能群数目相同而物种多样性不同的群落可入侵性没有显著性差异,功能群特征不同的群落也表现出可入侵性的差异,生活史周期短的单一物种群落和有着生物固氮功能的豆科植物群落可入侵程度较高,与喜旱莲子草属于同一功能群且有着相似生态位的土著种莲子草(A. sessilis)对入侵的抵抗力最强。实验结果表明,物种多样性和群落可入侵性并没有很显著的负相关,而是与物种特性基础上的物种功能群多样性呈负相关,群落中留给入侵种生态位的机会很可能是决定群落可入侵性的一个关键因子。  相似文献   

2.
Invasion of native habitats by alien or generalist species is recognized worldwide as one of the major causes behind species decline and extinction. One mechanism determining community invasibility, i.e. the susceptibility of a community to invasion, which has been supported by recent experimental studies, is species richness and functional diversity acting as barriers to invasion. We used Scandinavian semi-natural grasslands, exceptionally species-rich at small spatial scales, to examine this mechanism, using three grassland generalists and one alien species as experimental invaders. Removal of two putative functional groups, legumes and dominant non-legume forbs, had no effect on invasibility except a marginally insignificant effect of non-legume forb removal. The amount of removed biomass and original plot species richness had no effect on invasibility. Actually, invasibility was high already in the unmanipulated community, leading us to further examine the relationship between invasion and propagule pressure, i.e. the inflow of seeds into the community. Results from an additional experiment suggested that these species-rich grasslands are effectively open to invasion and that diversity may be immigration driven. Thus, species richness is no barrier to invasion. The high species diversity is probably in itself a result of the community being highly invasible, and species have accumulated at small scales during centuries of grassland management.  相似文献   

3.
Biological invasions are a global phenomenon that threatens biodiversity, and few, if any, ecosystems are free from alien species. The outcome of human‐mediated introductions is affected by the invasiveness of species and invasibility of ecosystems, but research has primarily focused on defining, characterizing and identifying invasive species; ecosystem invasibility has received much less attention. A prerequisite for characterizing invasibility is the ability to compare levels of invasion across ecosystems. In this paper, we aim to identify the best way to quantify the level of invasion by nonnative animals and plants by reviewing the advantages and disadvantages of different metrics. We explore how interpretation and choice of these measures can depend on the objective of a study or management intervention. Based on our review, we recommend two invasion indices and illustrate their use by applying them to two case studies. Relative alien species richness and relative alien species abundance indicate the contribution that alien species make to a community. They are easy to measure, can be applied to various taxa, are independent of scale and are comparable across regions and ecosystems, and historical data are often available. The relationship between relative alien richness and abundance can indicate the presence of dominant alien species and the trajectory of invasion over time, and can highlight ecosystems and sites that are heavily invaded or especially susceptible to invasion. Splitting species into functional groups and examining invasion patterns of transformer species may be particularly instructive for gauging effects of alien invasion on ecosystem structure and function. Establishing standard, transparent ways to define and quantify invasion level will facilitate meaningful comparisons among studies, ecosystem types and regions. It is essential for progress in ecology and will help guide ecosystem restoration and management.  相似文献   

4.
The Central Valley of California is noted for its dearth of remnant native grass populations and for low native grass seedling establishment within grasslands now dominated by non‐native annual species. In contrast, remnant populations are common along the coast, and studies have shown an ability for seedlings and adults to compete with non‐native annual grasses. The invasibility of well‐established populations of native grasses in the Central Valley remains unclear. The objectives of this study were to compare the invasibility of native grasses differing in density and species composition and, given the species in this study, to assess the ability of mixes with greater species richness to resist invasion relative to their abilities in monoculture. In the Sacramento Valley of California, six species of native grasses were planted at three densities in monospecific and mixed‐species plots. Percent cover of native perennial and non‐native annual grasses was measured in years 2 and 3, and biomass was sampled in year 5. Native grass biomass and, to a lesser extent, species composition were important in explaining variation in non‐native grass invasibility in the fifth year. Species‐rich treatments did not experience less invasion than would be expected by the proportional invasibility of each species in monoculture. However, invasibility of plots consisting of slower growing, shorter statured species decreased over time, suggesting a successional benefit to diverse communities. This study demonstrates that established stands of native grasses in the Sacramento Valley can resist invasion by non‐native annual grasses and that stand biomass is a particularly important factor in determining invasibility.  相似文献   

5.
Dominance not richness determines invasibility of tallgrass prairie   总被引:9,自引:0,他引:9  
Many recent studies suggest that more diverse communities are more resistant to invasion. Community characteristics that most strongly influence invasion are uncertain, however, due to covariation of diversity with competition and crowding. We examined separately the effects of species richness and dominance on invasion by an exotic legume, Melilotus officinalis , in intact, native Kansas grassland. We manipulated dominance of C4 grasses by reducing their abundance (i.e. ramet densities) by ∼25 and 50%. In addition, richness was reduced by removing species that were mainly rare and uncommon as might be expected with environmental changes such as drought and fragmentation. In both years of the study (2001–2002), invasibility, measured as peak establishment of Melilotus , was not affected by a 3-fold reduction in species richness, nor was there an interaction between loss of species and reduced dominance on invasion. In contrast, reductions in abundance of the dominants significantly reduced invasibility of the grassland plots in both years. Because the abundance of dominants was highly correlated with measures of competition (i.e. ratio of dominant biomass to total biomass) and crowding (total stem densities), this pattern was opposite to that expected if competition were indeed limiting invasion. Rather, invasion appeared to be facilitated by the dominant species, most likely because reduced dominance increased environmental stress. Our results suggest that dominance is the key community characteristic determining invasibility, because highly competitive and space-filling species can either enhance or reduce susceptibility to invasion depending on whether dominants create a more competitive environment or alleviate stressful conditions.  相似文献   

6.
Dominant species are known to exert strong influence over community dynamics, although little work has addressed how they affect invasibility. In this study, we examined whether dominant species identity and abundance affected invasibility of old-field plant communities. To quantify invasibility, we added seeds of 19 plant species into plots dominated by one of four different herbaceous perennial species ( Andropogon virginicus , Bromus inermis , Centaurea maculosa , or Solidago canadensis ) . We found that, independent of species richness and abiotic variables, plots dominated by Andropogon were the least invasible, while Bromus and Centaurea plots had the highest invasibility. We examined several potential mechanisms by which these dominant species might influence invasibility, and found invasion to increase with decreasing litter biomass and increasing community species richness. The abundance of the dominant species was not a significant predictor of invasion. These results indicate that dominant species identity plays an important role in determining invasibility of plant communities, though exact mechanisms underlying these effects still need to be explored.  相似文献   

7.
群落可侵入性及其影响因素   总被引:25,自引:1,他引:25       下载免费PDF全文
 可侵入性用于评价群落易遭受生物入侵的程度,受外来种死亡率、区域气候、干扰水平、生态系统抵抗入侵的能力、本地种竞争和抗干扰能力等因素的影响。当前对群落或区域间可侵入性的比较常以外来种数量或丰度为据,然而这两者仅代表了群落内单一的动态过程,不足以作为衡量群落可侵入性的广泛标准。借助一个描述外来种数量的简单模型阐明,由于影响可侵入性因素的复杂性,各地之间的可侵入性几乎不可比较。并从入侵过程、入侵种特性及本地种、本地群落对入侵的抵抗性几方面对群落可侵入性进行了阐述分析,其中着重介绍入侵生态中几个重要的概念,如可侵  相似文献   

8.
Although many studies have investigated how community characteristics such as diversity and disturbance relate to invasibility, the mechanisms underlying biotic resistance to introduced species are not well understood. I manipulated the functional group composition of native algal communities and invaded them with the introduced, Japanese seaweed Sargassum muticum to understand how individual functional groups contributed to overall invasion resistance. The results suggested that space preemption by crustose and turfy algae inhibited S. muticum recruitment and that light preemption by canopy and understory algae reduced S. muticum survivorship. However, other mechanisms I did not investigate could have contributed to these two results. In this marine community the sequential preemption of key resources by different functional groups in different stages of the invasion generated resistance to invasion by S. muticum . Rather than acting collectively on a single resource the functional groups in this system were important for preempting either space or light, but not both resources. My experiment has important implications for diversity–invasibility studies, which typically look for an effect of diversity on individual resources. Overall invasion resistance will be due to the additive effects of individual functional groups (or species) summed over an invader's life cycle. Therefore, the cumulative effect of multiple functional groups (or species) acting on multiple resources is an alternative mechanism that could generate negative relationships between diversity and invasibility in a variety of biological systems.  相似文献   

9.
Most studies focused on understanding habitat invasibility use the current levels of invasion as a direct proxy of habitat invasibility. This has shown to be biased by the influence of propagule pressure and climate. We suggest that plant growth forms need to be considered as an extra factor, as habitat preferences might not be equal for all potential invaders. We test the influence of propagule pressure, climate and habitat characteristics on the current level of invasion and habitat invasibility, specifically addressing whether an analysis focused on growth forms evidence different patterns than the total pool of alien species. We used 499 floristic vegetation plots located in Córdoba Mountains. We used proportional alien richness of the total pool and for each growth form as response variables. We identified models that best explained current levels of invasion. We used the residuals of the models with propagule pressure and climate as the response variable. Then, we performed linear models to test the relationship between habitat characteristics and the residuals of the models. We found different drivers of current alien distribution patterns for the total pool and each growth form. Habitat invasibility was not equal when quantified for the total pool or growth forms. Shrublands and outcrops were recorded as less susceptible to woody invasion, while grasslands and native woodlands were resistant to the invasion of grasses and none habitat type was resistant to the invasion of forbs. We highlight that the current level of invasion and habitat invasibility are highly growth form dependent.  相似文献   

10.
The relationship between invasion success and native biodiversity is central to biological invasion research. New theoretical and analytical approaches have revealed that spatial scale, land‐use factors and community assemblages are important predictors of the relationship between community diversity and invasibility and the negative effects of invasive species on community diversity. In this study we assess if the abundance of Lithobates catesbeianus, the American bullfrog, negatively affects the richness of native amphibian species in Atlantic Forest waterbodies in Brazil. Although this species has been invading Atlantic Forest areas since the 1930s, studies that estimate the invasion effects upon native species diversity are lacking. We developed a model to understand the impact of environmental, spatial and species composition gradients on the relationships between bullfrogs and native species richness. We found a weak positive relationship between bullfrog abundance and species richness in invaded areas. The path model revealed that this is an indirect relationship mediated by community composition gradients. Our results indicate that bullfrogs are more abundant in certain amphibian communities, which can be species‐rich. Local factors describing habitat heterogeneity were the main predictors of amphibian species richness and composition and bullfrog abundance. Our results reinforce the important role of habitats in determining both native species diversity and potential invasibility.  相似文献   

11.
Exotic plant invasions represent a threat to natural and managed ecosystems. Understanding of the mechanisms that determine why a given species may invade a given ecosystem, or why some biomes and regions seem more prone to invasions, is limited. One potential reason for this lack of progress may lie in how few studies have addressed invasion mechanisms from the point of view of the invaded community. On the other hand, the renewed debate about the relationship between ecological diversity and ecosystem stability offers the opportunity to revisit existing theory and empirical evidence, and to attempt to investigate which characteristics of plant communities, including their diversity, contribute to their invasibility. Empirical studies have shown both positive and negative relationships between species diversity of resident plant communities and their invasibility by external species. Rather than attempting to build a larger collection of case studies, research now needs to address the mechanisms underlying these relationships. Previous knowledge about the mechanisms favouring invasion needs to be coupled with community theory to form the basis of these new investigations. Modern community theory offers hypotheses and techniques to analyse the invasibility of communities depending on their diversity and other factors, such as species’ life histories and environmental variability. The body of knowledge accumulated in invasion ecology suggests that the role of disturbances, in interaction with fertility, and the importance of interactions with other trophic levels, are specific factors for consideration. In addition, it is essential for future studies to explicitly tease apart the effects of species richness per se from the effects of other components of ecological diversity, such as functional diversity (the number of functional groups) and trophic diversity (the number of interactions among trophic levels).  相似文献   

12.
Aim  The establishment success of exotic species is calculated as the fraction of introduced species that have become established, and invasion success is estimated as the fraction of established species that have spread significantly from their points of introduction. Records on species introductions are highly incomplete, so strong conclusions about the tens rule and invasibility of island and continents cannot be drawn.
Location  Global.
Methods  Using Jeschke (2008) as an example, we explain the issue of the inadequacy of data to draw conclusions about the tens rule and invasibility of island and continents.
Results  Lack of adequate data.
Main Conclusion  Jeschke (2008) probably overestimates the establishment and invasion success rates, so his conclusions about violation of the tens rule and that islands are not more susceptible to invasion than continents are misleading.  相似文献   

13.
We review and synthesize recent developments in the study of the invasion of communities in heterogeneous environments, considering both the invasibility of the community and impacts to the community. We consider both empirical and theoretical studies. For each of three major kinds of environmental heterogeneity (temporal, spatial and invader-driven), we find evidence that heterogeneity is critical to the invasibility of the community, the rate of spread, and the impacts on the community following invasion. We propose an environmental heterogeneity hypothesis of invasions, whereby heterogeneity both increases invasion success and reduces the impact to native species in the community, because it promotes invasion and coexistence mechanisms that are not possible in homogeneous environments. This hypothesis could help to explain recent findings that diversity is often increased as a result of biological invasions. It could also explain the scale dependence of the diversity–invasibility relationship. Despite the undoubted importance of heterogeneity to the invasion of communities, it has been studied remarkably little and new research is needed that simultaneously considers invasion, environmental heterogeneity and community characteristics. As a young field, there is an unrivalled opportunity for theoreticians and experimenters to work together to build a tractable theory informed by data.  相似文献   

14.
群落可入侵性及环境胁迫   总被引:6,自引:0,他引:6  
群落的可入侵性研究是入侵生态学的中心内容。从群落进化历史,群落结构,繁殖体压力。干扰和胁迫等5个影响入侵的主要因素综述了近年来群落可入侵性研究的工作进展和成果。其中重点阐述了群落结构对入侵的影响。包括群落物种组成,物种多样性和物种功能群多样性的诸多实验研究和相关假说,并用理论模型结合具体实验研究探讨了环境胁迫和可入侵性的关系。针对目前群落可入侵性研究存在的问题提出了自己的见解。  相似文献   

15.
Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we conducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness characteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure’ was considered in only ~29% of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion. An erratum to this article can be found at  相似文献   

16.
In the 1950s Charles Elton hypothesized that more diverse communities should be less susceptible to invasion by exotic species (biodiversity–invasibility hypothesis). The biodiversity–invasibility hypothesis postulates that species-rich communities are less vulnerable to invasion because vacant niches are less common and the intensity of interspecific competition is more severe. Field studies were conducted at two sites, a logged site and an unlogged site in Santa Rosa County, Florida, U.S.A, to test Elton’s hypothesis using cogongrass (Imperata cylindrica), a non-indigenous grass invading large areas of the Southeastern United States. The logged site was under 17-year-old loblolly pine prior to clear cutting. The unlogged site, a longleaf pine forest, was at the Blackwater River State Forest. Both the logged site and unlogged site showed no significant relationship between the rate of cogongrass spread and native plant species richness, functional richness, and cover of the invaded community. Increased species or functional richness may increase the use of resources; however, the extensive rhizome/root network possessed by cogongrass and its ability to thrive under shade may allow for its persistence in a diverse community. The results from both the logged and unlogged sites do not support the general hypothesis of Elton that invasion resistance and compositional stability increase with diversity. Biodiversity does not appear to be an important factor for cogongrass invasion in the southern United States. Extrinsic factors in this study prevent the ability to draw a defined causal relationship between native plant diversity and invasibility. Underlying reasons for why no relationship was observed may be simply due to the tremendous competitive ability of cogongrass or the narrow range of species richness, functional richness and cover observed in our study.  相似文献   

17.
We modify the commonly used invasibility concept for coexistence of species to the stronger concept of uniform invasibility. For two-species discrete-time competition and predator-prey models, we use this concept to find broad easily checked sufficient conditions for the rigorous concept of permanent coexistence. With these results, permanent coexistence becomes a tractable concept for many discrete-time population models. To understand how these conditions apply to nonpoint attractors, we generalize the concept of relative nonlinearity and use it to show how population fluctuations affect the long-term low-density growth rate (“the invasion rate”) of a species when it is invading the system consisting of the other species (“the resident”) at a single-species attractor. The concept of relative nonlinearity defines circumstances when this invasion rate is increased or decreased by resident population fluctuations arising from a nonpoint attractor. The presence and sign of relative nonlinearity is easily checked in models of interacting species. When relative nonlinearity is zero or positive, fluctuations cannot decrease the invasion rate. It follows that permanence is then determined by invasibility of the resident’s fixed points. However, when relative nonlinearity is negative, invasibility, and hence permanent coexistence, can be undermined by resident population fluctuations. These results are illustrated with specific two-species competition and predator-prey models of generic forms.  相似文献   

18.
The success of a biological invasion is context dependent, and yet two key concepts—the invasiveness of species and the invasibility of recipient ecosystems—are often defined and considered separately. We propose a framework that can elucidate the complex relationship between invasibility and invasiveness. It is based on trait-mediated interactions between species and depicts the response of an ecological network to the intrusion of an alien species, drawing on the concept of community saturation. Here, invasiveness of an introduced species with a particular trait is measured by its per capita population growth rate when the initial propagule pressure of the introduced species is very low. The invasibility of the recipient habitat or ecosystem is dependent on the structure of the resident ecological network and is defined as the total width of an opportunity niche in the trait space susceptible to invasion. Invasibility is thus a measure of network instability. We also correlate invasibility with the asymptotic stability of resident ecological network, measured by the leading eigenvalue of the interaction matrix that depicts trait-based interaction intensity multiplied by encounter rate (a pairwise product of propagule pressure of all members in a community). We further examine the relationship between invasibility and network architecture, including network connectance, nestedness and modularity. We exemplify this framework with a trait-based assembly model under perturbations in ways to emulate fluctuating resources and random trait composition in ecological networks. The maximum invasiveness of a potential invader (greatest intrinsic population growth rate) was found to be positively correlated with invasibility of the recipient ecological network. Additionally, ecosystems with high network modularity and high ecological stability tend to exhibit high invasibility. Where quantitative data are lacking we propose using a qualitative interaction matrix of the ecological network perceived by a potential invader so that the structural network stability and invasibility can be estimated from the literature or from expert opinion. This approach links network structure, invasiveness and invasibility in the context of trait-mediated interactions, such as the invasion of insects into mutualistic and antagonistic networks.  相似文献   

19.
Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.  相似文献   

20.
Resident diversity and resource enrichment are both recognized as potentially important determinants of community invasibility, but the effects of these biotic and abiotic factors on invasions are often investigated separately, and little work has been done to directly compare their relative effects or to examine their potential interactions. Here, we evaluate the individual and interactive effects of resident diversity and resource enrichment on plant community resistance to invasion. We factorially manipulated plant diversity and the enrichment of belowground (soil nitrogen) and aboveground (light) resources in low-fertility grassland communities invaded by Lolium arundinaceum, the most abundant invasive grass in eastern North America. Soil nitrogen enrichment enhanced L. arundinaceum performance, but increased resident diversity dampened this effect of nitrogen enrichment. Increased light availability (via clipping of aboveground vegetation) had a negligible effect on community invasibility. These results demonstrate that a community’s susceptibility to invasion can be contingent upon the type of resource pulse and the diversity of resident species. In order to assess the generality of these results, future studies that test the effects of resident diversity and resource enrichment against a range of invasive species and in other environmental contexts (e.g., sites differing in soil fertility and light regimes) are needed. Such studies may help to resolve conflicting interpretations of the diversity–invasibility relationship and provide direction for management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号