首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  Histamine intoxication is probably the best known toxicological problem of food-borne disease. A histamine-producing Staphylococcus capitis strain has been isolated from a cured meat product. The aim of this study was to gain deeper insights into the genetic determinants for histamine production in Staph. capitis .
Methods and Results:  The nucleotide sequence of a 6446-bp chromosomal DNA fragment containing the hdcA gene encoding histidine decarboxylase (HDC) has been determined in Staph. capitis IFIJ12. This DNA fragment contains five complete and two partial open reading frames. Putative functions have been assigned to gene products by sequence comparison with proteins included in the databases. The hdcA gene has been expressed in Escherichia coli resulting in HDC activity. The presence of a functional promoter (P hdc ) located upstream of hdcA has been demonstrated. Insertion of the histamine biosynthetic locus in Staph. capitis seems to be associated with a noticeable genome reorganization.
Conclusions:  Among the staphylococcal species analysed in this study only Staph. capitis strains produce histamine. The hdcA gene cloned from Staph. capitis encodes a functional HDC that produce histamine from the amino acid histidine.
Significance and Impact of the Study:  The identification of the DNA region involved in histamine production in Staph. capitis will allow further work in order to avoid histamine production in foods.  相似文献   

2.
3.
Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.  相似文献   

4.
5.
Fermented foods are frequently contaminated by histamine that is generated by microorganisms with histidine decarboxylase activity. The ingestion of large amounts of histamine can cause serious toxicological problems in humans. A study of the effects of histamine, histidine, and growth phase on histamine production by lactic acid bacteria isolated from wine is reported here. With northern blots and specific activity analysis, we observed that histidine induces the expression of the histidine decarboxylase gene (hdc) and that histamine causes a decrease in the expression of this gene. The expression of hdc is also mediated by the bacterial growth phase. Histidine and histamine do not affect histidine decarboxylase activity, whereas pyridoxal 5'-phosphate does. Data on histamine-producing lactic acid bacteria isolated from wine should contribute to the prevention of histamine formation during winemaking and storage.  相似文献   

6.
This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese.  相似文献   

7.
8.
Histamine production from histidine in fermented food products by lactic acid bacteria results in food spoilage and is harmful to consumers. We have isolated a histamine-producing lactic acid bacterium, Lactobacillus hilgardii strain IOEB 0006, which could retain or lose the ability to produce histamine depending on culture conditions. The hdcA gene, coding for the histidine decarboxylase of L. hilgardii IOEB 0006, was located on an 80-kb plasmid that proved to be unstable. Sequencing of the hdcA locus disclosed a four-gene cluster encoding the histidine decarboxylase, a protein of unknown function, a histidyl-tRNA synthetase, and a protein, which we named HdcP, showing similarities to integral membrane transporters driving substrate/product exchange. The gene coding for HdcP was cloned downstream of a sequence specifying a histidine tag and expressed in Lactococcus lactis. The recombinant HdcP could drive the uptake of histidine into the cell and the exchange of histidine and histamine. The combination of HdcP and the histidine decarboxylase forms a typical bacterial decarboxylation pathway that may generate metabolic energy or be involved in the acid stress response. Analyses of sequences present in databases suggest that the other two proteins have dispensable functions. These results describe for the first time the genes encoding a histamine-producing pathway and provide clues to the parsimonious distribution and the instability of histamine-producing lactic acid bacteria.  相似文献   

9.
On the basis of the comparison of the nucleotide sequences of the histidine decarboxylase genes ( hdc A) of Lactobacillus 30A and Clostridium perfringens and the amino acid sequences of these histidine decarboxylases and those of Lactobacillus buchneri and Micrococcus , oligonucleotides unique to the hdc A genes were synthesized and used in PCR. All histidine-decarboxylating lactic acid bacteria gave a signal with primer set JV16HC/JV17HC in PCR. In addition to this primer set, CL1/CL2 and CL1/JV17HC were also useful for the detection of histamine-forming Leuconostoc œnos strains in PCR. The 150 base pair amplification product of the decarboxylating Leuc. œnos strain generated with primer set CL1/CL2 was sequenced. Alignment studies showed a high degree of relatedness among the hdc A gene products of Gram-positive bacteria.
The amplification products of the hdc A genes from Lact. buchneri and Leuc. œnos were used to serve as a DNA probe in hybridization studies. All histidine-decarboxylating lactic acid bacteria gave a hybridization signal with the DNA probes. In hybridization only one false-positive signal with a Lactobacillus lindneri strain was observed, which was anticipated to contain a truncated hdc A gene.
In addition to these DNA probe tests, a simple and reliable activity test is presented, which can be used during starter selection to test strains for histidine decarboxylase activity.  相似文献   

10.
11.
Sundvik M  Kudo H  Toivonen P  Rozov S  Chen YC  Panula P 《FASEB journal》2011,25(12):4338-4347
The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.  相似文献   

12.
Formation of biogenic amines (BA) may occur in fermented foods and beverages due to the amino acid decarboxylase activities of Gram-positive bacteria. These compounds may cause food poisoning and therefore could imply food exportation problems. A set of consensual primers based on histidine decarboxylase gene (hdc) sequences of different bacteria was designed for the detection of histamine-producing Gram-positive bacteria. A multiplex PCR based on these hdc primers and recently designed primers targeting the tyrosine decarboxylase (tyrdc) gene was created. A third set of primers targeting the 16S rRNA gene of eubacteria was also used as an internal control. This multiplex PCR was performed on extracted DNA as well as directly on cell colonies. The results obtained show that this new molecular tool allowed for the detection of Gram-positive histamine- and/or tyramine-producing bacteria. The use of this molecular tool for early and rapid detection of Gram-positive BA-producing bacteria is of interest in evaluating the potential of cultured indigenous strains to produce biogenic amines in a fermented food product as well as to validate the innocuity of potential starter strains in the food industry.  相似文献   

13.
The use of molecular tools for early and rapid detection of gram-negative histamine-producing bacteria is important for preventing the accumulation of histamine in fish products. To date, no molecular detection or identification system for gram-negative histamine-producing bacteria has been developed. A molecular method that allows the rapid detection of gram-negative histamine producers by PCR and simultaneous differentiation by single-strand conformation polymorphism (SSCP) analysis using the amplification product of the histidine decarboxylase genes (hdc) was developed. A collection of 37 strains of histamine-producing bacteria (8 reference strains from culture collections and 29 isolates from fish) and 470 strains of non-histamine-producing bacteria isolated from fish were tested. Histamine production of bacteria was determined by paper chromatography and confirmed by high-performance liquid chromatography. Among 37 strains of histamine-producing bacteria, all histidine-decarboxylating gram-negative bacteria produced a PCR product, except for a strain of Citrobacter braakii. In contrast, none of the non-histamine-producing strains (470 strains) produced an amplification product. Specificity of the amplification was further confirmed by sequencing the 0.7-kbp amplification product. A phylogenetic tree of the isolates constructed using newly determined sequences of partial hdc was similar to the phylogenetic tree generated from 16S ribosomal DNA sequences. Histamine accumulation occurred when PCR amplification of hdc was positive in all of fish samples tested and the presence of powerful histamine producers was confirmed by subsequent SSCP identification. The potential application of the PCR-SSCP method as a rapid monitoring tool is discussed.  相似文献   

14.
15.
Histamine fish poisoning is caused by histamine-producing bacteria (HPB). Klebsiella pneumoniae and Klebsiella oxytoca are the best-known HPB in fish. However, 22 strains of HPB from fish first identified as K. pneumoniae or K. oxytoca by commercialized systems were later correctly identified as Raoultella planticola (formerly Klebsiella planticola) by additional tests. Similarly, five strains of Raoultella ornithinolytica (formerly Klebsiella ornithinolytica) were isolated from fish as new HPB. R. planticola and R. ornithinolytica strains were equal in their histamine-producing capabilities and were determined to possess the hdc genes, encoding histidine decarboxylase. On the other hand, a collection of 61 strains of K. pneumoniae and 18 strains of K. oxytoca produced no histamine.  相似文献   

16.
The frequency of the gseA gene encoding a glutamic acid-specific serine protease, GluSE, of Staphylococcus epidermidis was investigated. DNA hybridization analysis demonstrated that gseA existed exclusively in S. epidermidis but not in other bacteria examined. A single step PCR assay with a set of designed primers yielded amplification of gseA from all 69 clinical isolates of S. epidermidis taken from patients and healthy adults, whereas production of GluSE was observed in 74% (51/69) of the isolates. Furthermore, none of the 46 clinical isolates of other species of coagulase-negative staphylococci and 45 clinical isolates of Staphylococcus aureus showed amplification, except a Staphylococcus capitis strain. However, this strain was positive for a S. epidermidis-specific DNA region and the DNA sequence of the 16S rRNA gene showed 99% identity with that of S. epidermidis. Therefore, these results indicated that the present PCR assay for gseA was ubiquitous and highly specific for detection of S. epidermidis.  相似文献   

17.
18.
19.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

20.
We examined the involvement of thyrotropin-releasing hormone (TRH) and TRH type 1 and 2 receptors (TRH-R1 and TRH-R2, respectively) in the regulation of hypothalamic neuronal histamine. Infusion of 100 nmol TRH into the rat third cerebroventricle (3vt) significantly decreased food intake (p < 0.05) compared to controls infused with phosphate- buffered saline. This TRH-induced suppression of food intake was attenuated partially in histamine-depleted rats pre-treated with alpha-fluoromethylhistidine (a specific suicide inhibitor of histidine decarboxylase) and in mice with targeted disruption of histamine H1 receptors. Infusion of TRH into the 3vt increased histamine turnover as assessed by pargyline-induced accumulation of tele-methylhistamine (t-MH, a major metabolite of neuronal histamine in the brain) in the tuberomammillary nucleus (TMN), the paraventricular nucleus, and the ventromedial hypothalamic nucleus in rats. In addition, TRH-induced decrease of food intake and increase of histamine turnover were in a dose-dependent manner. Microinfusion of TRH into the TMN increased t-MH content, histidine decarboxylase (HDC) activity and expression of HDC mRNA in the TMN. Immunohistochemical analysis revealed that TRH-R2, but not TRH-R1, was expressed within the cell bodies of histaminergic neurons in the TMN of rats. These results indicate that hypothalamic neuronal histamine mediates the TRH-induced suppression of feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号