首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张宇凡  王小艺 《生态学报》2024,44(11):4478-4488
当昆虫类群表现为长生命周期k(k > 1)年时,成虫的羽化表现为非周期性、周期性和过渡周期性3种形式。非周期性即为成虫每年均羽化,周期性即为成虫每k年才羽化1次,过渡周期性为非周期昆虫逐渐进化为羽化周期性的必经阶段,不同年份羽化的同生群在密度上产生了显著差异,形成了小同生群和优势同生群。自然界中表现出完全羽化周期性的昆虫种类是较少的,但由于其高种群密度的成虫同步性羽化现象,对比非周期性昆虫更易暴发成灾。为明确周期性昆虫演化进程并为林区虫害防控提供理论指导,总结了周期性昆虫的种类和生活特性,不同年间的气候异质性、自然灾害、扩散到未分布区域、天敌、种间和种内竞争等因素均有可能成为过渡周期现象形成的最初驱动力,生活史延长、寄主-天敌互作、低温驱动效应、天敌不敏感-捕食者饱足效应、种间和种内竞争等是促使昆虫羽化周期性形成的可能机制。在林区管理实践中,应提前评估害虫羽化周期性产生的趋势和程度。当成虫表现出完全羽化周期性,应在集中羽化年份内采取见效快的综合防控策略,降低唯一同生群密度至经济阈值以下。当成虫表现出过渡周期性,应加大优势同生群防治力度、降低小同生群防治频率,以及采取天敌林间释放和保育技术以平衡天敌对目标害虫的不同发育阶段种群的控制作用大小,遏制或减缓天敌-寄主互作驱动下的周期性演化进程,逐渐实现由过渡周期阶段向非周期性的逆转。当成虫表现出非周期性,应减少专化性天敌的释放和针对害虫特定阶段的防治措施使用频率,优先选择作用于所有发育阶段且致死率不存在显著差异的防治手段,避免因人为干扰产生的周期性演化和进一步的成灾。  相似文献   

2.
Periodical cicadas are known for their unusually long life cycle for insects and their prime periodicity of either 13 or 17 years. One of the explanations for the prime periodicity is that the prime periods are selected to prevent cicadas from resonating with predators with submultiple periods. This paper considers this hypothesis by investigating a population model for periodical predator and prey. The study shows that if the periods of the two periodical species are not coprime, then the predator cannot resist the invasion of the prey. On the other hand, if the periods are coprime, then the predator can resist the invasion of the prey. It is also shown that if the periods are not coprime, then the life-cycle resonance can induce a permanent system, in which no cohorts are missing in both populations. On the other hand, if the periods are coprime, then the system cannot be permanent.  相似文献   

3.
Periodical cicadas are known for their unusually long life cycle for insects and their prime periodicity of either 13 or 17 years. One of the explanations for the prime periodicity is that the prime periods are selected to prevent cicadas from resonating with predators with submultiple periods. This paper considers this hypothesis by investigating a population model for periodical predator and prey. The study shows that if the periods of the two periodical species are not coprime, then the predator cannot resist the invasion of the prey. On the other hand, if the periods are coprime, then the predator can resist the invasion of the prey. It is also shown that if the periods are not coprime, then the life-cycle resonance can induce a permanent system, in which no cohorts are missing in both populations. On the other hand, if the periods are coprime, then the system cannot be permanent.  相似文献   

4.
Periodical organisms, such as bamboos and periodical cicadas, are very famous for their synchronous reproduction. In bamboos and other periodical plants, the synchronicity of mass-flowering and withering has been often reported indicating these species are monocarpic (semelparous) species. Therefore, synchronicity and periodicity are often suspected to be fairly tightly coupled traits in these periodical plants. We investigate the periodicity and synchronicity of Strobilanthes flexicaulis, and a closely related species S. tashiroi on Okinawa Island, Japan. The genus Strobilanthes is known for several periodical species. Based on 32-year observational data, we confirmed that S. flexicaulis is 6-year periodical mass-flowering monocarpic plant. All the flowering plants had died after flowering. In contrast, we found that S. tashiroi is a polycarpic perennial with no mass-flowering from three-year individual tracking. We also surveyed six local populations of S. flexicaulis and found variation in the synchronicity from four highly synchronized populations (>98% of plants flowering in the mass year) to two less synchronized one with 11-47% of plants flowering before and after the mass year. This result might imply that synchrony may be selected for when periodicity is established in monocarpic species. We found the selective advantages for mass-flowering in pollinator activities and predator satiation. The current results suggest that the periodical S. flexicaulis might have evolved periodicity from a non-periodical close relative. The current report should become a key finding for understanding the evolution of periodical plants.  相似文献   

5.
The axiom that zooplankton species exhibit upwards migration behaviour at night is challenged by recent findings. Such behaviour is not universal, may vary during ontogeny, and is occasionally reversed. Moreover, in some estuarine and coastal zooplankton species vertical migration rhythms are of tidal, not diel, periodicity. There is evidence for several species that vertical migrations are endogenously controlled, occurring in constant conditions in the laboratory, suggesting that they have arisen under considerable selection pressure. They appear to play a significant role in orientation and navigation of coastal and estuarine zooplankton, predicated on the selective advantage of closure of life cycles. Vertical migrations between water masses moving in different directions at tidal, diel or longer timescales permit dispersal and recruitment, or retention, of planktonic larvae and adults in favourable ecological locations. Exogenous factors serving as cues for, or directly controlling, vertical migration rhythms include light, hydrostatic pressure, salinity, temperature, water movements and gravity responses, besides biological factors such as the timing of larval release, duration of larval life and predator/prey interactions. Behavioural characteristics should be quantified and factored into dispersal models which assume that zooplankton adults and larvae are advected as passive particles.  相似文献   

6.
谢氏宽漠王Mantichorulasemenowi是荒漠半荒漠地区的有害昆虫之一。该文主要探讨了该虫的生物学特性和部分行为。该虫 2年发生 1代 ,世代不整齐 ,以成、幼虫越冬。卵期 1 0~ 1 8d ,幼虫共有 7龄 ,化蛹时间为 6月下旬至 8月上旬 ,蛹经过 1 1~ 1 7d羽化为成虫。食性杂。喜光 ,活动有明显的节律性。  相似文献   

7.
1. There is a paucity of information on ontogenetic changes in the dispersal of benthic invertebrates, which is an important aspect of their ecology. This study quantifies ontogenetic changes in diel periodicity in drift, and in upstream–downstream dispersal on the substratum for Elmis aenea, Oulimnius tuberculatus, Esolus parallelepipedus and Limnius volkmari (Coleoptera: Elmidae). Three drift nets were emptied every 3 h over 24 h in each month (October 1965–December 1968) at two contrasting sites: one in a deep section with abundant macrophytes, the other in a shallow stony riffle. Comparisons of periodicity between life‐stages of the same species were limited to months when numbers in the drift were highest. Dispersal was evaluated in six experimental stream channels, placed above the stream, with initial numbers of each life‐stage varying from 20 to 80. 2. Drift numbers were always highest at night with few or no animals in the day samples. Ontogenetic shifts in diel periodicity were similar for all four species. Drift catches were similar throughout the night for the early and intermediate larval instars and for mature adults, but were highest in the early hours of the night with a gradual decline thereafter for later larval instars and immature adults. These patterns were unaffected by a severe spate, even though drift numbers increased considerably. 3. Dispersal was density‐independent; the number of dispersing animals was a constant proportion of the initial number for each life‐stage. The relationship between dispersal distance and the number of animals travelling that distance was well described by an inverse power function. Median and maximum distances (m day?1) were estimated for each life‐stage. 4. Ontogenetic shifts in dispersal in the stream channels matched those shown in diel drift periodicity. For all four species, the later larval instars and immature adults showed little movement in either direction, whereas early and intermediate larval instars and mature adults dispersed predominantly upstream, adults travelling further than any other life‐stage. 5. Ontogenetic shifts in diel drift periodicity and dispersal were related to seasonal changes in drift density and critical periods in the life cycle. Such shifts have not been quantified in other stream invertebrates, but should be considered when evaluating the role of dispersal in their population dynamics and their colonization ability.  相似文献   

8.
Factors controlling the timing of reproduction in laboratory cultures of the polychaete Trposyllis prolifera.Typosyllis prolifera (Krohn) from Pore (Yugoslavia) has been cultured for 12 successive generations. The life cycle of the species in the laboratory is described briefly. During their life individuals reproduce several times (up to 15) by stolonization which, under constant laboratory conditions (LD 16:8, 20 °C), is cyclic and takes place about every 30 days. Based on the investigations of Durchon (1959) and Wissocq (1966), experiments on extirpation and transplantation of the proventriculus have been carried out. The results suggest that an endocrine system anatomically connected to the proventriculus is important in the control of reproduction. Most likely, the endogenous reproductive cycle of an individual is controlled by periodical changes of the activity of this system. During the period following stolonization, the endocrine system of the proventriculus, which at this time shows its maximal activity, inhibits sexual development and enables regeneration of the segments lost as stolon. A subsequent decrease of the hormonal activity induces sexual maturation and epitokous metamorphosis, thus leading to further stolonization. Exogenous factors influencing the timing of reproduction probably affect the endocrine function of the proventriculus. Short-day photoperiods (LD 10:14) and low temperatures (12 °C) given simultaneously (i.e. winter conditions) totally suppress reproduction. Under normally favourable conditions (LD 16:8, 20 °C), reproductive processes can be prevented by starving or amputation of caudal segments. In all these cases, however, stolonization can be induced by removing the proventriculus. Exogenous factors also play a decisive role in synchronizing reproductive events within the species population. Under field conditions reproduction shows a lunar periodicity. The endogenous reproductive cycles of cultured specimens can be synchronized by a periodical light regime simulating the change of the moon.  相似文献   

9.
Long life cycles in insects   总被引:1,自引:0,他引:1  
Long life cycles covering more than one year are known for all orders of insects. There are different mechanisms of prolongation of the life cycle: (1) slow larval development; (2) prolongation of the adult stage with several reproduction periods; (3) prolongation of diapause; (4) combination of these mechanisms in one life cycle. Lasting suboptimal conditions (such as low temperature, low quality of food or instability of food resources, natural enemies, etc.) tend to prolong life cycles of all individuals in a population. In this case, the larvae feed and develop for longer than a year, and the active periods are interrupted by dormancy periods. The nature of this dormancy is unknown: in some cases it appears to be simple quiescence, in others it has been experimentally shown to be a true diapause. Induction and termination of these repeated dormancy states are controlled by different environmental cues, the day-length being the principal one as in the case of the annual diapause. The long life cycles resulting from prolonged adult lifespan were experimentally studied mainly in beetles and true bugs. The possibility of repeated diapause and several periods of reproductive activity is related to the fact that the adults remain sensitive to day length, which is the main environmental cue controlling their alternative physiological states (reproduction vs. diapause). Habitats with unpredictable environmental changes stimulate some individuals in a population to extend their life cycles by prolonged diapause. The properties of this diapause are poorly understood, but results of studies of a few species suggest that this physiological state differs from the true annual diapause in deeper suppression of metabolism. Induction and intensity of prolonged diapause in some species appear to be genetically controlled, so that the duration of prolonged diapause varies among individuals in a group, even that of sibles reared under identical conditions. Thus, long life cycles are realized due to the ability of insects to interrupt activity repeatedly and enter dormancy. This provides high resistance to various environmental factors. Regardless of the nature of this dormancy (quiescence, annual or prolonged diapause, or other forms) and the life cycle duration, the adults always appear synchronously after dormancy in the nature. The only feasible explanation of this is the presence of a special synchronizing mechanism, most likely both exo- and endogenous, since the adults appear not only synchronously but also in the period best suited for reproduction. As a whole, the long life cycles resulting from various structural modifications of the annual life cycle, are typical of the species living under stable suboptimal conditions when the pressure of individual environmental factors is close to the tolerance limits of the species, even though it represents its norm of existence. Such life cycles are also typical of the insects living in unstable environments with unpredictable variability of conditions, those developing in cones and galls, feeding on flowers, seeds, or fruits with limited periods of availability, those associated with the plant species with irregular patterns of blossoming and fruiting, and those consuming low-quality food or depending on unpredictable food sources (e.g., predators or parasites). Long cycles are more common in: (1) insect species at high latitudes and mountain landscapes where the vegetation season is short and unstable; (2) species living in deserts or arid areas where precipitation is unstable and often insufficient for survival of food plants; (3) inhabitants of cold and temporary water bodies that are not filled with water every year. At the same time, long life cycles sometimes occur in insects from other climatic zones as well. It is also important to note that while there is a large body of literature dealing with the long life cycles in insects, it mostly focuses on external aspects of the phenomenon. Experimental studies are needed to understand this phenomenon, first of all the nature of dormancy and mechanisms of synchronization of adult emergence.  相似文献   

10.
My aim is to give a partial evaluation or critique of the stateof population genetics theory. A decent theory must includethe following components: the development of concepts of fitnessthat have demonstrated epistemic correlations, life tables,mating, fecundity, finite (even if large) niche size, and, ofcourse, Mendelism and mutation. It must in the end also includevarying environment and competition between species. The extentto which the desiderata are met is discussed. The big lacunaein the whole theory appear to be the inadequate treatment offitness and the ignoring of niche capacity. Some theorems thatare given as fundamental must be questioned and even discarded.Integration of ideas of simple Mendelism, quantitative geneticvariation, and ecology is the big task ahead. It is criticalthat more complete theory be developed.  相似文献   

11.
Although synthetic biology is a promising discipline, it also raises serious ethical questions that must be addressed in order to prevent unwanted consequences and to ensure that its progress leads toward the good of all. Questions arise about the role of this discipline in a possible redefinition of the concept of life and its creation. With regard to the products of synthetic biology, the moral status that they should be given as well as the ethically correct way to behave towards them are not clear. Moreover, risks that could result from a misuse of this technology or from an accidental release of synthetic organisms into the environment cannot be ignored; concerns about biosecurity and biosafety appear. Here we discuss these and other questions from a personalist ontological framework, which defends human life as an essential value and proposes a set of principles to ensure the safeguarding of this and other values that are based on it.  相似文献   

12.
Developments in genetic engineering may soon allow biologists to clone organisms from extinct species. The process, dubbed “de-extinction,” has been publicized as a means to bring extinct species back to life. For theorists and philosophers of biology, the process also suggests a thought experiment for the ongoing “species problem”: given a species concept, would a clone be classified in the extinct species? Previous analyses have answered this question in the context of specific de-extinction technologies or particular species concepts. The thought experiment is given more comprehensive treatment here. Given the products of three de-extinction technologies, twenty-two species concepts are “tested” to see which are consistent with the idea that species may be resurrected. The ensuing discussion considers whether or not de-extinction is a conceptually coherent research program and, if so, whether or not its development may contribute to a resolution of the species problem. Ultimately, theorists must face a choice: they may revise their commitments to species concepts (if those concepts are inconsistent with de-extinction) or they may recognize de-extinction as a means to make progress in the species problem.  相似文献   

13.
The evolutionary origin of periodical mass‐flowering plants (shortly periodical plants), exhibiting periodical mass flowering and death immediately after flowering, has not been demonstrated. Within the genus Strobilanthes (Acanthaceae), which includes more than 50 periodical species, Strobilanthes flexicaulis on Okinawa Island, Japan, flowers gregariously every 6 years. We investigated the life history of S. flexicaulis in other regions and that of closely related species together with their molecular phylogeny to reveal the evolutionary origin of periodical mass flowering. S. flexicaulis on Taiwan Island was found to be a polycarpic perennial with no mass flowering and, in the Yaeyama Islands, Japan, a monocarpic perennial with no mass flowering. Molecular phylogenetic analyses indicated that a polycarpic perennial was the ancestral state in this whole group including S. flexicaulis and the closely related species. No distinctive genetic differentiation was found in S. flexicaulis among all three life histories (polycarpic perennial, monocarpic perennial, and periodical plant). These results suggest that among S. flexicaulis, the periodical mass flowering on Okinawa Island had evolved from the polycarpic perennial on Taiwan Island via the monocarpic perennial in the Yaeyama Islands. Thus, the evolution of life histories could have taken at the level of local populations within a species.  相似文献   

14.
We develop a new model of life history evolution to investigate the evolution of age at first reproduction. Density dependence is taken into account. For a given "species", age of maturity, offspring survival, immature survival, adult survival, fecundity, immature age-classes entering in competition with adults and immature competitive ability are traits adjustable by natural selection, and constitute a particular strategy. On the contrary, the type of intraspecific competition (scramble or contest), strength of competition and inherent net reproductive rate Ro(inh) are fixed (specific) characteristics. As a consequence of fixing Ro(inh), the evolution of any trait will affect trade-offs between others. Evolutionarily stable strategies are determined numerically by using the mathematical concept of Lyapunov exponents. Altogether, we consider 960 different hypothetical "species" (i.e. different combinations of fixed traits). Corresponding ESSs are analyzed with respect to their age at first reproduction, adult survival and immature competitive ability components. They appear to be gathered in three groups. One is intuitive and characterized by a reduction of immature competitive ability and a correlation of age of maturity with adult survival; populations reach mainly equilibria. The two other groups respectively include "species" with low age of maturity but high adult survival, and "species" close to semelparity with delayed maturity; immature competitive ability may not be minimized, and populations possibly exhibit complex dynamics. In conclusion, the hypothesis that the evolution of a demographic parameter modifies trade-offs between others turns out to have important consequences. We argue that life history theory cannot ignore the source and mode-of-operation of density dependence and must regard potential short-term instability as essential.  相似文献   

15.
Short leukocyte telomere length (LTL) is associated with atherosclerosis in adults and diminished survival in the elderly. LTL dynamics are defined by LTL at birth, which is highly variable, and its age‐dependent attrition thereafter, which is rapid during the first 20 years of life. We examined whether age‐dependent LTL attrition during adulthood can substantially affect individuals' LTL ranking (e.g., longer or shorter LTL) in relation to their peers. We measured LTL in samples donated 12 years apart on average by 1156 participants in four longitudinal studies. We observed correlations of 0.91–0.96 between baseline and follow‐up LTLs. Ranking individuals by deciles revealed that 94.1% (95% confidence interval of 92.6–95.4%) showed no rank change or a 1 decile change over time. We conclude that in adults, LTL is virtually anchored to a given rank with the passage of time. Accordingly, the links of LTL with atherosclerosis and longevity appear to be established early in life. It is unlikely that lifestyle and its modification during adulthood exert a major impact on LTL ranking.  相似文献   

16.
Imbricational crown formation times (ICFTs) estimated from the number of perikymata on tooth surfaces are error-prone because the number of days between adjacent perikymata varies across individuals and species, and is only visible within tooth microstructure. We investigated striae of Retzius (SR) numbers (analogous to perikymata numbers), SR periodicities (days between SR or perikymata), and ICFTs for a mandibular canine sample (n=49) from medieval Denmark. We tested the relationship between SR number and periodicity to determine whether regression formulae could be produced that would allow periodicity (and ICFTs) to be determined from surface perikymata numbers. Periodicities (range=7-11 days, mode=8) and SR numbers (range=142-257, mean=190.3, s.d.=27.5) were normally distributed; ICFTs were non-normal (mean=1,594 days, s.d.=65.7). We tested periodicity as a quadratic, linear, and log-log transform linear function of SR number and found an inverse relationship (quadratic: R2=0.9504; linear: R2=0.9138; log-log transform: R2=0.9418; all p<0.001) that allowed estimation of periodicity from SR or perikymata numbers in this population and tooth type. If periodicity and SR number are inversely related in other hominin taxa, studies that have estimated ICFT by multiplying perikymata number by a human modal periodicity value or made inferences about development based only on perikymata numbers may have introduced substantial error into their ICFT estimates and life history inferences. The inverse relationship is similar to that predicted by a model of SR formation in which the ICFT for a given tooth type and population is held constant and all combinations of periodicity and SR number result in the same ICFT. However, we found that lower periodicities had longer ICFTs and higher periodicities had shorter ICFTs than the model predicted, suggesting that the model may not reflect the real process, or that there are other factors (e.g., sample size, misclassification, sexual dimorphism) also affecting the relationship between periodicity and SR number.  相似文献   

17.
Many microbial pathogens can switch to new hosts or adopt alternative transmission routes as environmental conditions change, displaying unexpected flexibility in their infection pathways and often causing emerging diseases. In contrast, parasitic worms that must develop through a fixed series of host species appear less likely to show phenotypic plasticity in their transmission pathways. Here, I demonstrate experimentally that a trematode parasite, Coitocaecum parvum, can accelerate its development and rapidly reach precocious maturity in its crustacean intermediate host in the absence of chemical cues emanating from its fish definitive host. Juvenile trematodes can also mature precociously when the mortality rate of their intermediate hosts is increased. Eggs produced by precocious adults hatch into viable larvae, capable of pursuing the parasite's life cycle. In the absence of chemical cues from fish hosts, the size of eggs released by precocious trematodes in their intermediate hosts becomes more variable, possibly indicating a bet-hedging strategy. These results illustrate that parasitic worms with complex life cycles have development and transmission strategies that are more plastic than commonly believed, allowing them to skip one host in their cycle when they perceive limited opportunities for transmission.  相似文献   

18.
Time series analysis of fossil biodiversity of marine invertebrates in the Paleobiology Database (PBDB) shows a significant periodicity at approximately 63 My, in agreement with previous analyses based on the Sepkoski database. I discuss how this result did not appear in a previous analysis of the PBDB. The existence of the 63 My periodicity, despite very different treatment of systematic error in both PBDB and Sepkoski databases strongly argues for consideration of its reality in the fossil record. Cross-spectral analysis of the two datasets finds that a 62 My periodicity coincides in phase by 1.6 My, equivalent to better than the errors in either measurement. Consequently, the two data sets not only contain the same strong periodicity, but its peaks and valleys closely correspond in time. Two other spectral peaks appear in the PBDB analysis, but appear to be artifacts associated with detrending and with the increased interval length. Sampling-standardization procedures implemented by the PBDB collaboration suggest that the signal is not an artifact of sampling bias. Further work should focus on finding the cause of the 62 My periodicity.  相似文献   

19.
A survey of the pressure resistance of aquatic animals in different stages of their life cycle shows that adults generally are more tolerant of pressure than the egg and nauplii, but older adults appear less pressure resistant than younger adults. Data on many species of aquatic animals of different size shows no correlation between size and pressure resistance. It is concluded that size is not a special determinant in the successful deep-sea colonization of shallow-water animals and this is consonant with the fact of occasional large deep-sea species whereas the average size is quite small in comparison with littoral species.  相似文献   

20.
Dental development and skeletal growth are central aspects used by anthropologists when investigating the ontogeny of a population or species. The interrelatedness of the two phenomena is often assumed to be high, but the nature of their relationship is obscured by the fact that they are both highly dependent upon chronological age. The exact relationship between the tempo of dental development and skeletal growth is unclear even in modern humans, which limits the ability to extrapolate to archaeological or fossil forms. It is clear that the influence of chronological age on these two aspects of ontogeny must be accounted for before examining their relationship to one another. This study tests whether dental development and skeletal growth are conditionally independent given age using known‐age modern human skeletal samples and proportional odds logistic regression. The results suggest that dental development and skeletal growth are moderately correlated and thus not conditionally independent given age. That is, individuals that are dentally advanced relative to their peers also tend to be skeletally advanced. However, this relationship is moderate at best, so dental development does not appear to be a highly reliable proxy for skeletal growth, or vice versa, in modern humans. These findings have implications for the reconstruction of ontogeny and life history of fossil hominin taxa, since the pace of dental development is often used as a life history proxy. Implications of this study suggest that the proposed accelerated dental development in Pleistocene hominins was not necessarily accompanied by faster skeletal growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号