首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

2.
Species composition and structure of the communities of fish parasites in river minnow Phoxinus phoxinus (L.) from the Pechora river were investigated in two of the Pechora-Ilychsky Biosphere Nature Reserve, Komi Republic. The component communities of the parasites in river minnow are shown to have a one-year cycle including the states of development, completion, and destruction. Communities in the state of development are characterized by a low variety of species, low values of Shannon index, often high values of domination index, presence of only two groups of parasites in the structure described by variational curved of the conditional biomasses of species, deviation of the conditional biomasses of species from the linear regression, and sum of errors of the regression equations lower a threshold value. The communities consist of young individual parasites and their larval stages. Completed community is characterized by the following properties. There are three groups of parasites, differing in allometric index, in the structure, discerned by the ratio of conditional biomasses of the species included. Conditional biomasses of species in ecologically safe reservoirs lie on the segments of straight lines. Species variety reaches its maximum. Species are presented mainly by mature specimens and larval stages of the parasites using fish as intermediate host. Community in the state of destruction shows low values of domination index and relatively small variety pf species. Such community is consist of one or two groups of species, which are represented by mature, oviparous, and dying individuals. There are larval stages of parasites using fish as intermediate hosts. Dominant species or species groups, as well as values of indexes describing the component communities of parasites, can be different in mature river minnow from different geographical regions. However, the number of groups of parasites, formed by the ratio of conditional biomasses, remains constant, and sum of errors of the regression equations characterizing the communities is always below 0.25. Component communities of parasites in young river minnows differ from the communities in mature fishes by lower variety of species. Lower biomass, and lower number of individual parasites. The communities of parasites in 0+ old fishes are often characterized by lesser number of groups of parasites, classified by the ratio of their biomasses, and presence of two dominate species. It is often impossible to count the sum of errors of the regression equations describing spread in values of biomasses of the species forming the community.  相似文献   

3.
Most of the evidence for a key role of parasites in structuring communities is based on the idea of a differential susceptibility of host species to infection and its consequences. Recent advances in community ecology suggest that life-history traits of free-living species can be an important determinant of their co-existence within communities. On the other hand, parasites have the potential to indirectly alter the life-history traits of their hosts, such as developmental time or dispersal. We discuss the idea that these indirect effects could influence the structure of free-living and parasite communities. We explore this idea in relation to related concepts including 'parasitic arbitration' and engineering processes.  相似文献   

4.
Past research on parasites and community ecology has focussed on two distinct levels of the overall community. First, it has been shown that parasites can have a role in structuring host communities. They can have differential effects on the different hosts that they exploit, they can directly debilitate a host that itself is a key structuring force in the community, or they can indirectly alter the phenotype of their host and change the importance of the host for the community. Second, certain parasite species can be important in shaping parasite communities. Dominant parasite species can directly compete with other parasite species inside the host and reduce their abundance to some extent, and parasites that alter host phenotype can indirectly make the host more or less suitable for other parasite species. The possibility that a parasite species simultaneously affects the structure of all levels of the overall community, i.e. the parasite community and the community of free-living animals, is never considered. Given the many direct and indirect ways in which a parasite species can modulate the abundance of other species, it is conceivable that some parasite species have functionally important roles in a community, and that their removal would change the relative composition of the whole community. An example from a soft-sediment intertidal community is used to illustrate how the subtle, indirect effects of a parasite species on non-host species can be very important to the structure of the overall community. Future community studies addressing the many potential influences of parasites will no doubt identify other functionally important parasite species that serve to maintain biodiversity.  相似文献   

5.
Component communities of parasites of gudgeon from the ecologically sustainable reservoirs are studied. The general principle of their organization is established. The material had been collected in the basins of Northern Dvina (41 specimens of gudgeon were dissected) and Mezen (55 specimens of gudgeon were dissected) rivers using generally accepted methods. Errors of regression equations for all individual species groups with their subsequent summation were calculate in order to estimate the state of the component community structure. In different seasons of a year the component community of the parasites of gudgeon from the Ertom river has the same structure, which is determined by the ratio of the biomasses of its comprising species, while it is differs in its species composition, biomasses of the species, leading groups of parasites, and in the dominating species. Thus, several stable seasonal states of the communities of fish parasites can be supposed. Three groups of species distinguished by the ratio of their biomasses are the general for the component communities of the parasites of gudgeon from the basins of Northern Dvina and Mezen rivers. The generalist species is more frequently the dominating species. The group of autogenic species always leads in the community. When methods of parasites collection are violated, the decrease in the number of species groups down to two is recorded. When the materials collected in different periods of a year from an ecologically sustainable reservoir are mixed, the sum of the errors of regression equations become higher than 0.250.  相似文献   

6.
Parasites and hosts live in communities consisting of many interacting species, but few studies have examined how communities affect parasite virulence and transmission. We studied a food web consisting of two species of milkweed, two milkweed herbivores (monarch butterfly and oleander aphid) and a monarch butterfly-specific parasite. We found that the presence of aphids increased the virulence and transmission potential of the monarch butterfly's parasite on one milkweed species. These increases were associated with aphid-induced decreases in the defensive chemicals of milkweed plants. Our experiment suggests that aphids can indirectly increase the virulence and transmission potential of monarch butterfly parasites, probably by altering the chemical composition of a shared food plant. These results indicate that species that are far removed from host-parasite interactions can alter such interactions through cascading indirect effects in the food web. As such, indirect effects within ecological communities may drive the dynamics and evolution of parasites.  相似文献   

7.
The parasite fauna of the gray four-eyed opossum, Philander opossum (Linnaeus, 1758), and the common opossum, Didelphis marsupialis Linnaeus, 1758, in Camp du Tigre, French Guiana, is characterized. Nine species from the gastrointestinal system were recovered from both species, which shared 80% of their parasites. The parasite fauna comprised several monoxenous species (63%) and was dominated by Aspidodera raillieti Travassos, 1914, which exhibited high levels of prevalence and abundance in both communities. Only 2 species (Moennigia sp. and Spirura guianensis) had been recorded in other species of mammals. Both species richness and taxonomic composition at the level of component communities from this locality were compared against 11 communities present in the Virginia ( Didelphis virginiana ), white-bellied (Didelphis albiventris), and common opossum from Argentina, Brazil, Mexico, and the United States. Neither host phylogeny nor taxonomy accounted for statistical differences in species richness. There was no statistical difference among species richness values among the 9 localities studied. Taxonomic similarity was analyzed by means of the Jaccard's similarity index, including all, and only common species (occurring in prevalence >10%). The results suggest that sympatric species of marsupials share more species of parasites than parasite communities occurring in conspecific marsupials from different localities. As a consequence, taxonomic composition of these parasite communities varied depending on the locality. Probably, marsupials of the monophyletic Didelphini offer the same compatibility toward their parasites, by presenting them with similar habitats. Subtle differences in lifestyles of the marsupials may determine the chance of encounter between the symbionts and prevent some parasites from completing their life cycles. Further and more rigorous tests are necessary to determine the roles of encounter and compatibility filters, as well as the role of chance, in the structuring of parasite communities in marsupials.  相似文献   

8.
Parasite communities tend to be dissimilar in hosts that are geographically, phylogenetically, ecologically and developmentally distant from one another. The decay of community similarity is a powerful and increasingly common method of studying parasite beta diversity, but most studies have examined only a single type of distance. Here, we evaluate distances based on the phylogeny, ecology, spatial proximity and size of hosts, as predictors of the similarity of parasite communities in individual hosts, host populations and host species. We surveyed parasites in six species of fish collected simultaneously from six localities in the St. Lawrence River, Canada, and species in a common group of larval parasites were discriminated using DNA sequences from barcode region of cytochrome c oxidase I. Distances based on the habitat use patterns of host species were good predictors of short‐term, ecological similarity of parasite communities, such as that operating at the scale of the individual host. The genetic distance between host species was associated with almost all types of similarity at all scales, particularly qualitative and phylogenetic similarity of parasite communities at the level of populations and meta‐populations of hosts. The trophic level, diet, spatial proximity and size of hosts were poor predictors of parasite community similarity. The increased taxonomic resolution provided by molecular data increased the explanatory power of regression models, and different factors were implicated when parasite species were distinguished with DNA barcodes than when larval parasites were lumped into morphospecies, as is commonly practiced.  相似文献   

9.
Individuals are often co-infected with several parasite species, yet the consequences of drug treatment on the dynamics of parasite communities in wild populations have rarely been measured. Here, we experimentally reduced nematode infection in a wild mouse population and measured the effects on other non-target parasites. A single oral dose of the anthelmintic, ivermectin, significantly reduced nematode infection, but resulted in a reciprocal increase in other gastrointestinal parasites, specifically coccidial protozoans and cestodes. These results highlight the possibility that drug therapy may have unintended consequences for non-target parasites and that host–parasite dynamics cannot always be fully understood in the framework of single host–parasite interactions.  相似文献   

10.
Although various species of acanthocephalan parasites can increase the vulnerability of their amphipod intermediate hosts to predation, particularly by altering their photophobic behaviour, their influence on the structure of amphipod communities and the success of invader species has so far received little attention. We compared the prevalence and behavioural influence of a fish acanthocephalan parasite, Pomphorhynchus laevis, in two species of amphipods, Gammarus pulex and Gammarus roeseli in sympatry in the river Ouche (Burgundy, eastern France). There, G. pulex is a resident species, whereas G. roeseli is a recent coloniser. Both uninfected G. pulex and G. roeseli were strongly photophobic, although less so in the invading species. However, there was no significant difference in reaction to light between infected and uninfected G. roeseli, whereas infected G. pulex were strongly photophilic. We discuss our results in relation to the parasite's ability to manipulate invading host species, the possibility that resistant individuals have been selected during the invasion process, and the role that acanthocephalan parasites can play in shaping the structure of amphipod communities.  相似文献   

11.
Pathogens and parasites are fascinating to epidemiologists and ecologists alike; as well as causing disease in individual species, they can perturb the normal functioning of a community and thus give insights into the way that the community 'functions' Several recent studies on diseases in animal populations have confirmed the importance of pathogens and parasites as components of ecological systems, while also revealing the underlying structure of complex multispecies communities.  相似文献   

12.
Nested species subsets are a common pattern in many types of communities found in insular or fragmented habitats. Nestedness occurs in some communities of ectoparasites of fish, as does the exact opposite departure from random assembly, anti-nestedness. Here, we looked for nested and anti-nested patterns in the species composition of communities of internal parasites of 23 fish populations from two localities in Finland. We also compared various community parameters of nested and anti-nested assemblages of parasites, and determined whether nestedness may result simply from a size-related accumulation of parasite species by feeding fish hosts. Nested parasite communities were characterised by higher prevalence (proportion of infected fish) and intensities of infection (number of parasites per fish) than anti-nested communities; the two types of non-random communities did not differ with respect to parasite species richness, however. In addition, the correlation between fish size and the number of parasite species harboured by individual fish was much stronger in nested assemblages than in anti-nested ones, where it was often nil. These results were shown not to be artefacts of sampling effort or host phylogeny. They apply to both assemblages of adult and larval parasites, which were treated separately. Since species of larval parasites are extremely unlikely to interact with one another in fish hosts, the establishment of nestedness appears independent of the potential action of interspecific interactions. The species composition of these parasite communities is not determined from within the community, but rather by the extrinsic influence of host feeding rates and how they amplify differences among parasite species in probabilities of colonisation or extinction. Nested patterns occur in parasite communities whose fish hosts accumulate parasites in a predictable fashion proportional to their size, whereas anti-nested communities occur in parasite communities whose fish hosts do not, possibly because of dietary specialisation preventing them from sampling the entire pool of parasite species available locally. Thus, nestedness in parasite communities may result from processes somewhat different from those generating nested patterns in free-living communities.  相似文献   

13.
Communities of metazoan parasites in ten species of fishes from Cold Lake, Alberta are described and compared. Relative abundances in the overall community of parasites in the lake were estimated using data on abundance in each host species, plus estimates of the relative abundances of the species of hosts. Parasites of the numerically dominant salmonid fishes dominated the overall community, with over half of the individual parasites being Metechinorhynchus salmonis . Exchange of parasites between host species was greatest between related and/or abundant host species. Parasite communities in cisco and whitefish, Coregonus spp., were relatively rich in species and diverse (Simpson's index) compared with communities in those species in other lakes in North America; communities in lake trout, Salvelinus spp., and the non-salmonid fishes were poor in species and low in diversity compared with communities in other lakes. Parasite species overlaps (Jaccard index) between related host species in Cold Lake were greater than overlaps within host species between lakes. The same pattern is seen in data from some other lakes. These features support the hypothesis of Wisiewski (1958); that the parasite community within an ecosystem is characterized by parasites of the numerically dominant hosts.  相似文献   

14.
Despite their ubiquity, in most cases little is known about the impact of eukaryotic parasites on their mammalian hosts. Comparative approaches provide a powerful method to investigate the impact of parasites on host ecology and evolution, though two issues are critical for such efforts: controlling for variation in methods of identifying parasites and incorporating heterogeneity in sampling effort across host species. To address these issues, there is a need for standardized methods to catalogue eukaryotic parasite diversity across broad phylogenetic host ranges. We demonstrate the feasibility of a metabarcoding approach for describing parasite communities by analysing faecal samples from 11 nonhuman primate species representing divergent lineages of the primate phylogeny and the full range of sampling effort (i.e. from no parasites reported in the literature to the best‐studied primates). We detected a number of parasite families and regardless of prior sampling effort, metabarcoding of only ten faecal samples identified parasite families previously undescribed in each host (x? = 8.5 new families per species). We found more overlap between parasite families detected with metabarcoding and published literature when more research effort—measured as the number of publications—had been conducted on the host species' parasites. More closely related primates and those from the same continent had more similar parasite communities, highlighting the biological relevance of sampling even a small number of hosts. Collectively, results demonstrate that metabarcoding methods are sensitive and powerful enough to standardize studies of eukaryotic parasite communities across host species, providing essential new tools for macroecological studies of parasitism.  相似文献   

15.
Metazoan parasite communities of Crassostrea gigas and Ostrea edulis from Great Britain, Crassostrea virginica from Mexico, and Saccostrea commercialis from Australia are described and summarized in terms of species composition, species richness, total number of individuals and dominance. Metazoan parasite communities in all host species were composed of turbellarians and the metacercarial stage of digeneans, with the exception of S. commercialis where only metacercariae were found. Arthropods, including one copepod and one mite species, were present only in British oyster species. All metazoan parasite communities of oysters had few species and low density of individuals. Richest communities were found in C. virginica at both component and infracommunity level. The least diverse component community occurred in S. commercialis. Infracommunities in O. edulis and S. commercialis never exceeded one species per host. The host response against parasites is suggested as the principal factor responsible for depauperate parasite communities of oysters. Environmental factors characteristic of tropical latitudes are likely to have enhanced both the number of species and the densities of parasites per host in the infracommunities of C. virginica.  相似文献   

16.
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.  相似文献   

17.
Predicting the effects of climate change requires understanding complex interactions among multiple abiotic and biotic factors. By influencing key interactions among host species, parasites can affect community and ecosystem structuring. Yet, our understanding of how multiple parasites and abiotic factors interact to alter ecosystem structure remains limited. To empirically test the role of temperature variation and parasites in shaping communities, we used a multigenerational mesocosm experiment composed of four sympatric freshwater crustacean species (isopods and amphipods) that share up to four parasite species. Mesocosms were assigned to one of four different treatments with contrasting seasonal temperatures (normal and elevated) and parasite exposure levels (continuous and arrested (presence or absence of parasite larvae in mesocosm)). We found that parasite exposure and water temperature had interactive effects on the host community. Continuous exposure to parasites altered the community structure and differences in water temperature altered species abundance. The abundance of the amphipod Paracalliope fluviatilis decreased substantially when experiencing continuous parasite exposure and elevated water temperatures. Elevated temperatures also led to parasite-induced mortality in another amphipod host, Paracorophium excavatum. Contrastingly, isopod hosts were affected much less, suggesting increasing temperatures in conjunction with higher parasite exposure might increase their relative abundance in the community. Changes in invertebrate host populations have implications for other species such as fish and birds that consume crustaceans as well as having impacts on ecosystem processes, such as aquatic primary production and nutrient cycling. In light of climate change predictions, parasite exposure and rise in average temperatures may have substantial impacts on communities and ecosystems, altering ecosystem structure and dynamics.  相似文献   

18.
Pugachev ON 《Parazitologiia》2000,34(3):196-209
Phoxinus phoxinus being a widely distributed through Palaearctic and ecologically specialised species is a good model to study parasite communities. 72 specimens of P. phoxinus from 5 localities of the Siberia and Mongolia has been studied by the author and 651 specimens--from 5 localities in Kola Peninsula by the other researches. 595 specimens were studied by B. S. Shulman (1983) year around. To describe infra- and component parasite communities the Brillouin, Shannon, Berger-Parker indexes were used. Communities within individual fish were compared within, and between localities with quantitative percentage similarity index (Esch e. a., 1988). The Brillouin, Shannon and Berger-Parker indexes can be calculated based on abundance or total number of parasites of each species for component or compound communities. Intensity cannot be used. Significant negative correlation was observed between the Brillouin and Berger-Parker dominance indexes (r = -0.984, p < 0.01, n = 66) in infracommunities. The Brillouin index was significant positive correlated with the number of parasites in infracommunity (r = 0.407, p < 0.01, n = 66) and with the number of species in infracommunity (r = 0.92, p < 0.01, n = 66). Berger-Parker dominance index was significant negative correlated with the number of parasite in infacommunity (r = -0.815, p < 0.01, n = 66) and with the number of species in infracommunity (r = -0.268, p < 0.05). Total number of parasites and the number of species in infracommunity was positive correlated significantly (r = 0.565, p < 0.01, n = 66). These correlations remain the same at the component community level for the Shannon/Berger-Parker indexes (r = -0.965, p < 0.01, n = 10) and total number of parasites/number of species (r = 0.789, p < 0.01, n = 10) only. Similarity index was not correlate with any other indexes and parameters. No significant correlation was found between the Brillouin, Berger-Parker indexes and geographical characters of localities (longitude, latitude, altitude above sea-level). Weak correlation (r = 0.551, p < 0.098, n = 10) was observed only between the Berger-Parker dominance index and the latitude. 37 metazoan parasites have been found in all localities (specialists--40%, allogenic species--22%, rare species--40%). Allogenic generalist species of the genus Diplostomum (D. phoxini in most cases) were dominant in 60% of the component communities and 36% of infracommunities on average. 20% of the component communities were dominant by autogenic specialists Gyrodactylus magnificus and only 12% of the infracommunities were dominated by this species. Trematode and nematode larvae were core species in most localities. Frequency distribution of infracommunity richness varied from locality to locality being overdispersed in combine sample. Parasite communities at least on the infracommunity level demonstrate high variability of all parameters. Some tendency to decrease the diversity seems to be present depending on remoteness from prospective centre of origin of the genus Phoxinus.  相似文献   

19.
1. It is well recognised that non-indigenous species (NIS) can affect native communities via the 'spillover' of introduced parasites. However, two other potentially important processes, the 'spillback' of native parasites from a competent NIS host, where the latter acts as a reservoir leading to amplified infection in native hosts, and the 'dilution' of parasitism by a NIS host acting as a sink for native parasites, have either not been tested or largely overlooked.
2. We surveyed the helminth parasite fauna of native New Zealand fish in Otago streams that varied in the abundance of introduced brown trout Salmo trutta , to look for evidence of spillback and/or dilution. Spillover is not an issue in this system, with trout introduced as parasite-free eggs.
3. Seven native parasite species were present across 12 sites; significant inverse relationships with an index of trout abundance (i.e. dilution) were documented for three species infecting the native upland bully Gobiomorphus breviceps , and one species infecting the native roundhead galaxias Galaxias anomalus .
4. An inverse relationship between bully energy status and infection intensity of one parasite species suggests that parasite dilution could have positive effects on bully populations. Our failure to detect similar relationships for the other parasites does not preclude the possibility that dilution is beneficial to native fish, since parasites may have subtle or unmeasured impacts.
5. The parasite dilution patterns reported are compelling in that they occurred across several native host and parasite species; as such they have important implications for invasion ecology, providing an interesting contrast to the largely negative impacts reported for NIS. Mechanisms potentially responsible for the patterns observed are discussed.  相似文献   

20.
Community composition, including the relative density of each host species, plays a vital role in the transmission of parasites or disease in freshwater ecosystems. Whereas some host species can effectively transmit parasites, others can act as dead ends (non-viable transmission routes), accumulating large numbers of parasites throughout their life, thus becoming important sinks for parasite populations. Although population sinks have been identified in certain host-parasite systems, robust field estimates of the proportions of parasites that are lost to these hosts are lacking. Here, we quantified the distribution of encysted larval hairworms (phylum Nematomorpha), common parasites in lotic ecosystems, in two subalpine stream communities of New Zealand. With parasite and host population densities calculated per m2, we identified which host species most likely contributed to the transmission of three sympatric hairworm morphotypes identified in both streams, and which species acted as population sinks. We also tested for seasonal patterns and peaks in the abundance of each morphotype in the two communities over the sampling season. Finally, we tested whether hosts emerging from the streams had comparable abundances of hairworm morphotypes throughout the sampling period. For each morphotype, different key sets of host species harboured more hairworms on average (abundance) than others, depending on the stream. For one morphotype in particular, two species of hosts were found to be important population sinks that inhibited over a third of these parasites from completing their life cycle. We also observed a clear peak in abundance for another hairworm morphotype during summer. Our data suggest that hosts emerging from the streams matched their aquatic counterparts with respect to hairworm abundance, indicating no infection-dependent reduction in emergence success. Our findings suggest that, depending on relative community composition, sympatric parasites follow different host transmission pathways, some of which lead to dead ends that potentially impact overall infection dynamics. In turn, this information can help us understand the spread or emergence of disease in both freshwater and terrestrial environments, since hairworms infect terrestrial arthropods to complete their life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号