首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that the magnitude of the postexercise onset threshold for sweating is increased by the intensity of exercise was tested in eight subjects. Esophageal temperature was monitored as an index of core temperature while sweat rate was measured by using a ventilated capsule placed on the upper back. Subjects remained seated resting for 15 min (no exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption (V(o2 peak)) followed by a 20-min seated recovery. Subjects then donned a liquid-conditioned suit used to regulate mean skin temperature. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently, the skin was heated ( approximately 4.0 degrees C/h) until sweating occurred. Exercise resulted in an increase in the onset threshold for sweating of 0.11 +/- 0.02, 0.23 +/- 0.01, and 0.33 +/- 0.02 degrees C above that measured for the no-exercise resting values (P < 0.05) for the 55, 70, and 85% of V(o2 peak) exercise conditions, respectively. We did note that there was a greater postexercise hypotension as a function of exercise intensity as measured at the end of the 20-min exercise recovery. Thus it is plausible that the increase in postexercise threshold may be related to postexercise hypotension. It is concluded that the sweating response during upright recovery is significantly modified by exercise intensity and may likely be influenced by the nonthermal baroreceptor reflex adjustments postexercise.  相似文献   

2.
This study was undertaken to determine the effect of exercise duration on the time course and magnitude of excess postexercise O2 consumption (EPOC). Six healthy male subjects exercised on separate days for 80, 40, and 20 min at 70% of maximal O2 consumption on a cycle ergometer. A control experiment without exercise was performed. O2 uptake, respiratory exchange ratio (R), and rectal temperature were monitored while the subjects rested in bed 24 h postexercise. An increase in O2 uptake lasting 12 h was observed for all exercise durations, but no increase was seen after 24 h. The magnitude of 12-h EPOC was proportional to exercise duration and equaled 14.4 +/- 1.2, 6.8 +/- 1.7, and 5.1 +/- 1.2% after 80, 40, and 20 min of exercise, respectively. On the average, 12-h EPOC equaled 15.2 +/- 2.0% of total exercise O2 consumption (EOC). There was no difference in EPOC:EOC for different exercise durations. A linear decrease with exercise duration was observed in R between 2 and 24 h postexercise. No change was observed in recovery rectal temperature. It is concluded that EPOC increases linearly with exercise duration at a work intensity of 70% of maximal O2 consumption.  相似文献   

3.
4.
The purpose of this study was to determine the effects of high intensity/ low volume (HILV) and low intensity/high volume (LIHV) isokinetic resistance exercise on postexercise glucose tolerance. Subjects (n = 10) participated in a counterbalanced, randomized design of 2 separate isokinetic resistance exercise trials (HILV and LIHV) of reciprocal concentric knee flexion and knee extension in a fasted state. Each bout was followed by a 45-minute oral glucose tolerance test (OGTT; 1.8 g.kg fat free mass(-1)). Blood samples were obtained every 15 minutes to determine glucose and insulin concentrations. There was no difference in total work between the 2 trials (p = 0.229). Blood glucose was significantly higher at all time points compared with time 0 following the LIHV trial (p < 0.05). Following the HILV trial, blood glucose was significantly elevated at 15 and 30 minutes (p < 0.05), but returned to resting values by 45 minutes. Insulin concentration was significantly elevated following both trials at all time points (p < 0.05). Blood glucose and insulin were significantly higher following the LIHV at 30 and 45 minutes compared with the HILV trial (p < 0.05). These results demonstrate that although the total work output was similar across trials, high intensity muscle contraction is associated with an enhanced normalization of glucose homeostasis following a large postexercise oral glucose feed.  相似文献   

5.
Lee TH  Jang MH  Shin MC  Lim BV  Kim YP  Kim H  Choi HH  Lee KS  Kim EH  Kim CJ 《Life sciences》2003,72(12):1421-1436
The expression of c-Fos, an immediately early gene, is a marker of neural activity. In the present study, the effect of treadmill exercise on c-Fos expression was investigated in various regions of the rat hippocampus via immunohistochemistry. The first part of the experiment was aimed at determining the dependence of c-Fos expression on the intensity of treadmill exercise. In most of the hippocampal regions studied, increasing c-Fos expression was observed with increasing exercise intensity. In the second part of the experiment, the dependence of c-Fos expression on the duration of treadmill exercise was investigated. The c-Fos expression induced by mild-intensity exercise increased until the 7th day of exercise and subsequently decreased. Results of the present study suggest that the effect of treadmill exercise on neuronal activity in the hippocampus is intensity-and duration-dependent.  相似文献   

6.
7.
To study the effects of exercise intensity and duration on excess postexercise oxygen consumption (EPOC), 8 men [age = 27.6 (SD 3.8) years, VO2max = 46.1 (SD 8.5) ml min-1 kg-1] performed four randomly assigned cycle-ergometer tests (20 min at 60% VO2max, 40 min at 60% VO2max, 20 min at 70% VO2max, and 40 min at 70% VO2max). O2 uptake, heart rate and rectal temperature were measured before, during, and for 1 h following the exercise tests. Blood for plasma lactate measurements was obtained via cannulae before, and at selected times, during and following exercise. VO2 rapidly declined to preexercise levels following each of the four testing sessions, and there were no differences in EPOC between the sessions. Blood lactate and rectal temperature increased (P < 0.05) with exercise, but had returned to preexercise levels by 40 min of recovery. The results indicate that VO2 returned to resting levels within 40 min after the end of exercise, regardless of the intensity (60% and 70% VO2max) or duration (20 min and 40 min) of the exercise, in men with a moderate aerobic fitness level.  相似文献   

8.
Two experiments were performed to examine salivary immunoglobulin A (s-IgA) responses to varying levels of exercise intensity and duration. For experiment 1, 9 college men (mean age, SD = 23.56, 1.64 years) completed treadmill runs of 15, 30, and 45 min at approximately 60% of maximum oxygen consumption (VO2max). For experiment 2, 9 other college men (mean age, SD = 23.67, 2.0 years) ran for 20 min at approximately 50, 65 and 80% of VO2max. Unstimulated salivary samples were collected before, and immediately, 1 and 2 h after the exercise. Samples were assayed for s-IgA using an enzyme-linked immunosorbent assay. Mean s-IgA levels did not change significantly (P greater than 0.05) at any of the post-exercise collection times when compared to pre-exercise levels. The results of this investigation indicated that running at intensities of 50-80% of VO2max and for durations of 15-45 min did not affect s-IgA levels.  相似文献   

9.
10.
11.
Ceramide is the key compound on crossroads of sphingolipid metabolism. The content and composition of ceramides in skeletal muscles have been shown to be affected by prolonged exercise. The aim of this study was to examine the effect of exercise on the activity of key enzymes of ceramide metabolism in skeletal muscles. The experiments were carried out on male Wistar rats (200-250 g) divided into four groups: sedentary, exercised for 30 min, 90 min, and until exhaustion. The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of ceramide, sphingosine, sphinganine and sphingosine-1-phosphate were determined in three types of muscle. We have found that the activity and expression of SPT increase gradually in each muscle with duration of exercise. These changes were followed by elevation in the content of sphinganine. These data indicate that exercise increases de novo synthesis of ceramide. The aSMase activity gradually decreased with duration of exercise in each type of muscle. After exhaustive exercise the activity of both isoforms of ceramidase were reduced in each muscle. The ceramide level depends both on duration of exercise and muscle type. The ceramide level in the soleus and white gastrocnemius decreased after 30 min of running. After exhaustive exercise it was elevated in the soleus and red gastrocnemius. It is concluded that exercise strongly affects the activity of key enzymes involved in ceramide metabolism and in consequence the level of sphingolipid intermediates in skeletal muscles.  相似文献   

12.
Fifteen men were studied during 100 m, 400 m and 3,000 m runs at maximal speed to determine total urinary protein and albumin excretion rates in relation to different distances of running. Venous blood lactate rose to 7.5 mmol.l-1 after the 100 m and 3,000 m events, while reaching 12 mmol.l-1 after the 400 m dash. Total urinary protein excretion increased to 330, 1640 and 565 micrograms.min-1 after the 100 m, 400 m and 3,000 m runs respectively, as compared with basal values (70 micrograms.min-1). In the meantime, albumin excretion increased respectively by 5, 25 and 18 fold of the resting values. The renal clearance of albumin increased to 0.84, 5.62 and 3.35 microliter.min-1 after the three runs, as compared with a mean value of 0.19 microliter.min-1 at rest. Exponential relationships (r = 0.85) were recorded between post-exercise venous lactate and albumin, and total protein excretion. The present work illustrates the major influence of the intensity of exercise (anaerobic glycolytic component), rather than its duration, on the excretion rate of urinary proteins.  相似文献   

13.
We compared in human skeletal muscle the effect of absolute vs. relative exercise intensity on AMP-activated protein kinase (AMPK) signaling and substrate metabolism under normoxic and hypoxic conditions. Eight untrained males cycled for 30 min under hypoxic conditions (11.5% O(2), 111 +/- 12 W, 72 +/- 3% hypoxia Vo(2 peak); 72% Hypoxia) or under normoxic conditions (20.9% O(2)) matched to the same absolute (111 +/- 12 W, 51 +/- 1% normoxia Vo(2 peak); 51% Normoxia) or relative (to Vo(2 peak)) intensity (171 +/- 18 W, 73 +/- 1% normoxia Vo(2 peak); 73% Normoxia). Increases (P < 0.05) in AMPK activity, AMPKalpha Thr(172) phosphorylation, ACCbeta Ser(221) phosphorylation, free AMP content, and glucose clearance were more influenced by the absolute than by the relative exercise intensity, being greatest in 73% Normoxia with no difference between 51% Normoxia and 72% Hypoxia. In contrast to this, increases in muscle glycogen use, muscle lactate content, and plasma catecholamine concentration were more influenced by the relative than by the absolute exercise intensity, being similar in 72% Hypoxia and 73% Normoxia, with both trials higher than in 51% Normoxia. In conclusion, increases in muscle AMPK signaling, free AMP content, and glucose disposal during exercise are largely determined by the absolute exercise intensity, whereas increases in plasma catecholamine levels, muscle glycogen use, and muscle lactate levels are more closely associated with the relative exercise intensity.  相似文献   

14.
Plasma ghrelin levels during exercise - effects of intensity and duration   总被引:2,自引:0,他引:2  
Ghrelin, a recently discovered hormone of gastric origin has been shown to stimulate appetite and food intake. In man it is considered to play a role in energy homeostasis and regulation of somatropic function. As exercise affects hunger/satiety sensations and food intake, at least under some experimental conditions, we investigated the effect of exercise intensity and duration on ghrelin release and subsequent ad libitum food intake in normal weight subjects. Bicycle exercise on an ergometer for 30 min at 50 W which was below the aerob-anaerobic threshold led to an increase of ghrelin which remained unchanged during the higher intensity at 100 W. Respective hunger/satiety ratings and subsequent food intake and postprandial ghrelin suppression were identical and not different from controls. In a second group 7 subjects cycled at 50 W for 30, 60 and 120 min, respectively. Ghrelin concentrations rose significantly by 50-70 pg/ml above baseline for the respective period of exercise. While postexercise premeal ghrelin levels were not significantly different subsequent food intake after 120 min of cycling was significantly greater compared to control, 30 min and 60 min exercise, respectively. The present data suggest that low rather than high-intensity exercise stimulates ghrelin levels independent of exercise duration. Stimulation of food intake during prolonged exercise is most likely not due to changes of ghrelin.  相似文献   

15.
We examined the net catabolism of two pools of glycogen, proglycogen (PG) and macroglycogen (MG), in human skeletal muscle during exercise. Male subjects (n = 21) were assigned to one of three groups. Group 1 exercised 45 min at 70% maximal O(2) uptake (VO(2 max)) and had muscle biopsies at rest, 15 min, and 45 min. Group 2 exercised at 85% VO(2 max) to exhaustion (45.4 +/- 3.4 min) and had biopsies at rest, 10 min, and exhaustion. Group 3 performed three 3-min bouts of exercise at 100% VO(2 max) separated by 6 min of rest. Biopsies were taken at rest and after each bout. Group 1 had small MG and PG net glycogenolysis rates (ranging from 3.8 +/- 1.0 to 2.4 +/- 0.6 mmol glucosyl units. kg(-1). min(-1)) that did not change over time. In group 2, the MG glycogenolysis rate remained low and unchanged over time, whereas the PG rate was initially elevated (11.3 +/- 2.3 mmol glucosyl units. kg(-1). min(-1)) and declined (P < or = 0.05) with time. During the first 10 min, PG concentration ([PG]) declined (P < or = 0.05), whereas MG concentration ([MG]) did not. Similarly, in group 3, in both the first and the second bouts of exercise [PG] declined (P < or = 0.05) and [MG] did not, although by the end of the second exercise period the [MG] was lower (P < or = 0.05) than the rest level. The net catabolic rates for PG in the first two exercises were 22.6 +/- 6.8 and 21.8 +/- 8.2 mmol glucosyl units. kg(-1). min(-1), whereas the corresponding values for MG were 17.6 +/- 6.0 and 10.8 +/- 5.6. The MG pool appeared to be more resistant to mobilization, and, when activated, its catabolism was inhibited more rapidly than that of PG. This suggests that the metabolic regulation of the two pools must be different.  相似文献   

16.
Arterial blood lactate concentrations were measured in six normal males before, during and after 3- and 6-min bicycle exercises performed at three different work rates. The lactate recovery curves were fitted to a bi-exponential time function consisting of a rapidly increasing and a slowly decreasing component, which supplied an accurate representation of the changes in lactate concentration. Variations in the parameters of this mathematical model have been studied as a function of the duration of exercise and of the work rate, showing a clear dependence on exercise duration such that increasing exercise length decreases the velocity constants of the fitted curves. In terms of the functional meaning which can be given to these constants, this result indicates that extending exercise duration from 3 to 6 min reduces the ability of the whole body to exchange and remove lactate. This effect did not qualitatively modify the one already described, which is due to increased work rates, but it shifted the ability to exchange and remove lactate towards lower values. The main conclusion of the study is that lactate kinetic data vary as a function of time during exercise. This inference must be accounted for in the interpretation of lactate data obtained during muscular exercise.  相似文献   

17.
18.
This experiment investigated the effects of intensity of exercise on excess postexercise oxygen consumption (EPOC) in eight trained men and eight women. Three exercise intensities were employed 40%, 50%, and 70% of the predetermined maximal oxygen consumption (VO2max). All ventilation measured was undertaken with a standard, calibrated, open circuit spirometry system. No differences in the 40%, 50% and 70% VO2max trials were observed among resting levels of oxygen consumption (V02) for either the men or the women. The men had significantly higher resting VO2 values being 0.31 (SEM 0.01) 1·min–1 than did the women, 0.26 (SEM 0.01) 1·min–1 (P < 0.05). The results indicated that there were highly significant EPOC for both the men and the women during the 3-h postexercise period when compared with resting levels and that these were dependent upon the exercise intensity employed. The duration of EPOC differed between the men and the women but increased with exercise intensity: for the men 40% – 31.2 min; 50% – 42.1 min; and 70% – 47.6 min and for the women, 40% – 26.9 min; 50% – 35.6 min; and 70% – 39.1 min. The highest EPOC, in terms of both time and energy utilised was at 70% VO2max. The regression equation for the men, where y=O2 in litres, and x=exercise intensity as a percentage of maximum was y=0.380x + 1.9 (r 2=0.968) and for the women is y=0.374x–0.857 (r 2=0.825). These findings would indicate that the men and the women had to exercise at the same percentage of their VO2max to achieve the maximal benefits in terms of energy expenditure and hence body mass loss. However, it was shown that a significant EPOC can be achieved at moderate to low exercise intensities but without the same body mass loss and energy expenditure.  相似文献   

19.
This study determined the effects of elevated plasma epinephrine on fat metabolism during exercise. On four occasions, seven moderately trained subjects cycled at 25% of peak oxygen consumption (VO(2 peak)) for 60 min. After 15 min of exercise, subjects were intravenously infused with low (0.96 +/- 0.10 nM), moderate (1.92 +/- 0.24 nM), or high (3.44 +/- 0.50 nM) levels (all P < 0.05) of epinephrine to increase plasma epinephrine above control (Con; 0.59 +/- 0.10 nM). During the interval between 35 and 55 min of exercise, lipolysis [i.e., rate of appearance of glycerol] increased above Con (4.9 +/- 0.5 micromol. kg(-1). min(-1)) with low, moderate, and high (6.5 +/- 0.5, 7.1 +/- 0.8, and 10.6 +/- 1.2 micromol. kg(-1). min(-1), respectively; all P < 0.05) levels of epinephrine despite simultaneous increases in plasma insulin. The release of fatty acid into plasma also increased progressively with the graded epinephrine infusions. However, fatty acid oxidation was lower than Con (11.1 +/- 0.8 micromol. kg(-1). min(-1)) during moderate and high levels (8.7 +/- 0.7 and 8.1 +/- 0.9 micromol. kg(-1). min(-1), respectively; P < 0.05). In one additional trial, the same subjects exercised at 45% VO(2 peak) without epinephrine infusion, which produced a plasma epinephrine concentration identical to low levels. However, lipolysis was lower (i.e., 5.5 +/- 0.6 vs. 6.5 +/- 0.5 micromol. kg(-1). min(-1); P < 0.05). In conclusion, elevations in plasma epinephrine concentration during exercise at 25% of VO(2 peak) progressively increase whole body lipolysis but decrease fatty acid oxidation. Last, increasing exercise intensity from 25 to 45% VO(2 peak) attenuates the lipolytic actions of epinephrine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号