首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interaction between DNA and an Escherichia coli protein omega   总被引:102,自引:0,他引:102  
An E. coli protein, designated ω, has been purified at least 1000-fold. Treatment of a eovalently closed DNA duplex containing negative superhelical turns with ω results in the loss of most of the superhelical turns. The loss of superhelical turns follows a gradual course rather than a one-hit mechanism. This reaction does not require a cofactor. No other change in the physical properties of the DNA could be detected. The DNA remains covalently closed. Its ultraviolet absorption spectrum, circular dichroism, buoyant density in CsCl, sedimentation properties in neutral media containing varying amounts of ethidium and in an alkaline medium, and its susceptibility toward Neurospora endonuclease, are not significantly different from an untreated DNA containing the same number of superhelical turns. Thus it appears that ω is capable of introducing a “swivel” reversibly into a DNA. A plausible mechanism is postulated.  相似文献   

2.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

3.
DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.  相似文献   

4.
In order to gain insights into the mechaism of ssDNA binding and recognition by Escherichia coli DNA topoisomerase I, the structure of the 67 kDa N-terminal fragment of topoisomerase I was solved in complex with ssDNA. The structure reveals a new conformational stage in the multistep catalytic cycle of type IA topoisomerases. In the structure, the ssDNA binding groove leading to the active site is occupied, but the active site is not fully formed. Large conformational changes are not seen; instead, a single helix parallel to the ssDNA binding groove shifts to clamp the ssDNA. The structure helps clarify the temporal sequence of conformational events, starting from an initial empty enzyme and proceeding to a ssDNA-occupied and catalytically competent active site.  相似文献   

5.
The RecA protein of Escherichia coli performs a number of ATP-dependent, in vitro reactions and is a DNA-dependent ATPase. Small oligodeoxyribonucleotides were used as DNA cofactors in a kinetic analysis of the ATPase reaction. Polymers of deoxythymidilic acid as well as oligonucleotides of mixed base composition stimulated the RecA ATPase activity in a length-dependent fashion. Both the initial rate and the extent of the reaction were affected by chain length. Full activity was seen with chain lengths > or = 30 nt. Partial activity was seen with chain lengths of 15-30 nt. The lower activity of shorter oligonucleotides was not simply due to a reduced affinity for DNA, since effects of chain length on KmATP and the Hill coefficient for ATP hydrolysis were also observed. The results also suggested that single-stranded DNA secondary structure frequently affects the ATPase activity of RecA protein with oligodeoxyribonucleotides.  相似文献   

6.
7.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

8.
The single-stranded DNA-binding protein of Escherichia coli.   总被引:15,自引:2,他引:15       下载免费PDF全文
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.  相似文献   

9.
DNA replication of single-stranded Escherichia coli DNA phages   总被引:14,自引:0,他引:14  
  相似文献   

10.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

11.
Single-stranded DNA released from E. coli wild type and mutant cells by alkaline-EDTA-detergent was analyzed using the recently developed biophysical technique of viscoelastometry. Under the lysis conditions used, it was possible to detect single strands of molecular weight approximately 2 times 10-9 daltons. Little difference was detected in the size of single-stranded DNA from log phase vs. stationary phase cultures, or from cells treated with chloramphenicol to allow completion of replicating chromosomes. The largest single strands from ligase overproducing, endonuclease minus, and pol A1 mutants were likewise of approximately the same size as wild type, but were present in smaller yields. The reduction in single-strand molecular weight as a result of heating intact cells was investigated as a function of time and temperature. Heating at 37 degrees C for up to 20 min produced no additional single-strand breaks, but temperatures from 45 to 65 degrees introduced breaks. Solutions maintained at pH 12.5 were not stable indefinitely, and the relative viscosity of such solutions was found to decrease over a period of several hours.  相似文献   

12.
Jezewska MJ  Bujalowski W 《Biochemistry》2000,39(34):10454-10467
Quantitative analyses of the interactions of the Escherichia coli replicative helicase PriA protein with a single-stranded DNA have been performed, using the thermodynamically rigorous fluorescence titration technique. The analysis of the PriA helicase interactions with nonfluorescent, unmodified nucleic acids has been performed, using the macromolecular competition titration (MCT) method. Thermodynamic studies of the PriA helicase binding to ssDNA oligomers, as well as competition studies, show that independently of the type of nucleic acid base, as well as the salt concentration, the type of salt in solution, and nucleotide cofactors, the PriA helicase binds the ssDNA as a monomer. The enzyme binds the ssDNA with significant affinity in the absence of any nucleotide cofactors. Moreover, the presence of AMP-PNP diminishes the intrinsic affinity of the PriA protein for the ssDNA by a factor approximately 4, while ADP has no detectable effect. Analyses of the PriA interactions with different ssDNA oligomers, over a large range of nucleic acid concentrations, indicates that the enzyme has a single, strong ssDNA-binding site. The intrinsic affinities are salt-dependent. The formation of the helicase-ssDNA complexes is accompanied by a net release of 3-4 ions. The experiments have been performed with ssDNA oligomers encompassing the total site size of the helicase-ssDNA complex and with oligomers long enough to encompass only the ssDNA-binding site of the enzyme. The obtained results indicate that salt dependence of the intrinsic affinity results predominantly, if not exclusively, from the interactions of the ssDNA-binding site of the helicase with the nucleic acid. There is an anion effect on the studied interactions, which suggests that released ions originate from both the protein and the nucleic acid. Contrary to the intrinsic affinities, cooperative interactions between bound PriA molecules are accompanied by a net uptake of approximately 3 ions. The PriA protein shows preferential intrinsic affinity for pyrimidine ssDNA oligomers. In our standard conditions (pH 7.0, 10 degrees C, 100 mM NaCl), the intrinsic binding constant for the pyrimidine oligomers is approximately 1 order of magnitude higher than the intrinsic binding constant for the purine oligomers. The significance of these results for the mechanism of action of the PriA helicase is discussed.  相似文献   

13.
14.
C Urbanke  A Schaper 《Biochemistry》1990,29(7):1744-1749
The time course of the reaction of Escherichia coli single-stranded DNA binding protein (E. coli SSB) with poly(dT) and M13mp8 single-stranded DNA has been measured by fluorescence stopped-flow experiments. For poly(dT), the fluorescence traces follow simple bimolecular behavior up to 80% saturation of the polymer with E. coli SSB. A mechanistic explanation of this binding behavior can be given as follows: (1) E. coli SSB is able to translocate very rapidly on the polymer, forming cooperative clusters. (2) In the rate-limiting step of the association reaction, E. coli SSB is bound to the polymer only by one or two of its four contact sites. As compared to poly(dT), association to single-stranded M13mp8 phage DNA is slower by at least 2 orders of magnitude. We attribute this finding to the presence of secondary structure elements (double-stranded structures) in the natural single-stranded DNA. These structures cannot be broken by E. coli SSB in a fast reaction. In order to fulfill its physiological function in reasonable time, E. coli SSB must bind newly formed single-stranded DNA immediately. The protein can, however, bind to such pieces of the newly formed single-stranded DNA which are too short to cover all four binding sites of the E. coli SSB tetramer.  相似文献   

15.
16.
Active transport of maltose in Escherichia coli requires the presence of both maltose-binding protein (MBP) in the periplasm and a complex of MalF, MalG, and MalK proteins (FGK2) located in the cytoplasmic membrane. Earlier, mutants in malF or malG were isolated that are able to grow on maltose in the complete absence of MBP. When the wild-type malE+ allele, coding for MBP, was introduced into these MBP-independent mutants, they frequently lost their ability to grow on maltose. Furthermore, starting from these Mal- strains, Mal+ secondary mutants that contained suppressor mutations in malE were isolated. In this study, we examined the interaction of wild-type and mutant MBPs with wild-type and mutant FGK2 complexes by using right-side-out membrane vesicles. The vesicles from a MBP-independent mutant (malG511) transported maltose in the absence of MBP, with Km and Vmax values similar to those found in intact cells. However, addition of wild-type MBP to these mutant vesicles produced unexpected responses. Although malE+ malG511 cells could not utilize maltose, wild-type MBP at low concentrations stimulated the maltose uptake by malG511 vesicles. At higher concentrations of the wild-type MBP and maltose, however, maltose transport into malG511 vesicles became severely inhibited. This behaviour of the vesicles was also reflected in the phenotype of malE+ malG511 cells, which were found to be capable of transporting maltose from a low external concentration (1 microM), but apparently not from millimolar concentrations present in maltose minimal medium. We found that the mutant FGK2 complex, containing MalG511, had a much higher apparent affinity towards the wild-type MBP than did the wild-type FGK2 complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The recO gene product is required for DNA repair and some types of homologous recombination in wild-type Escherichia coli cells. RecO protein has been previously purified and shown to bind to single- and double-stranded DNA and to promote the renaturation of complementary single-stranded DNA molecules. In this study, purified RecO protein was shown to catalyze the assimilation of single-stranded DNA into homologous superhelical double-stranded DNA, an activity also associated with RecA protein. The RecO protein-promoted strand assimilation reaction requires Mg2+ and is ATP independent. Because of the biochemical similarities between RecO and RecA proteins, the ability of RecO protein to substitute for RecA protein in DNA repair in vivo was also assessed in this study. The results show that overexpression of RecO protein partially suppressed the UV repair deficiency of a recA null mutant and support the hypothesis that RecO and RecA proteins are functionally similar with respect to strand assimilation and the ability to enhance UV survival. These results suggest that RecO and RecA proteins may have common functional properties.  相似文献   

19.
Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.  相似文献   

20.
Changes in molecular weight of newly synthesized DNA was studied after bleomycin treatment of Escherichia coli cells. The treatment by this drug causes only the increase of dispersion in sedimentation profiles of daughter DNA strands in wild type cells. There are two alternative explanation of this fact. First, single-strand breakage does not occur in newly synthesized DNA, i.e. bleomycin-induced athyminic sites do not block cellular DNA polymerases. Second, it is possible to explain it by quick rejoining of given breaks by cell repair systems. The sedimentation profile of daughter DNA strands of recA mutant rules out the first possibility. Observed shift to low molecular weight fractions region strongly indicates the formation of single-strand breaks in newly synthesized DNA. Extensive daughter DNA degradation in xthA mutant supports the idea of the existence of very effective excision repair in the case of apyrimidinic sites. Thus, non-eliminated bleomycin-induced damage causes the formation of single-strand breaks in newly synthesized DNA strands. These breaks may be repaired in the course of recA-dependent post-replication repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号