共查询到20条相似文献,搜索用时 15 毫秒
1.
CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma. 相似文献
2.
Underdeveloped nations are relatively protected from the worldwide asthma epidemic; the hygiene hypothesis suggests this is due to suppression of Th2-mediated inflammation by increased exposure to pathogens and their products. Although microbial exposures can promote Th2-suppressing Th1 responses, even Th2-skewing infections, such as helminths, appear to suppress atopy, suggesting an alternate explanation for these observations. To investigate whether induction of regulatory responses by helminths may counter allergic inflammation, we examined the effects of helminth infection in a murine model of atopic asthma. We chose Heligosomoides polygyrus, a gastrointestinal nematode, as the experimental helminth; this worm does not enter the lung in its life cycle. We found that H. polygyrus infection suppressed allergen-induced airway eosinophilia, bronchial hyperreactivity, and in vitro allergen-recall Th2 responses in an IL-10-dependent manner; total and OVA-specific IgE, however, were increased by worm infection. Finally, helminth-infected mice were protected against eosinophilic inflammation induced by adoptive transfer of OVA-stimulated CD4(+) cells, and transfer of cells from helminth-infected/OVA-exposed mice suppressed OVA-induced eosinophilic inflammation, suggesting a role for regulatory cells. Increased CD4(+)CD25(+)Foxp3(+) cells were found in thoracic lymph nodes of helminth-infected/OVA-exposed mice. Helminthic colonization appears to protect against asthma and atopic disorders; the regulatory cytokine, IL-10, may be a critical player. 相似文献
3.
This work reports the investigation of the effect of airway IL-4RA gene transfer by a recombinant retroviral vector on airway
inflammation and airway responsiveness in asthmatic mice. The retrovirus-mediated delivery of IL-4RA to the airways of mice
inhibited elevations of airway responsiveness and the development of allergic inflammation in asthmatic mice, and regulated
the Th1/Th2 balance in OVA-sensitized and -challenged mouse models. This suggests that gene therapy is a therapeutic option
for treating and controlling chronic airway inflammation and asthma symptoms. 相似文献
4.
Allergic asthma is a complex immunologically mediated disease associated with increased oxidative stress and altered antioxidant defenses. It was hypothesized that alpha-tocopherol (alpha-T) decreases oxidative stress and therefore its absence may influence allergic inflammatory process, a pathobiology known to be accompanied by oxidative stress. Therefore, selected parameters of allergic asthma sensitization and inflammation were evaluated following ovalbumin sensitization and re-challenge of alpha-T transfer protein (TTP) knock-out mice (TTP(-/-)) that have greatly reduced lung alpha-T levels (e.g.<5%) compared to their litter mate controls (TTP(+/+)). Results showed that severe alpha-T deficiency result in a blunted lung expression of IL-5 mRNA and IL-5 protein and plasma IgE levels compared with TTP(+/+) mice following immune sensitization and rechallenge, although lung lavage eosinophil levels were comparable in both genomic strains. It is concluded that the initial stimulation of immune responses by the TTP(-/-) mice were generally blunted compared to the TTP(+/+) mice, thus diminishing some aspects of subsequent allergic inflammatory processes. 相似文献
5.
OBJECTIVE: IL-10 is a potent anti-inflammatory cytokine, and IL-10-producing regulatory T cells are effective inhibitors of murine asthmatic responses. This study determined whether IL-10-dependent mechanisms mediated the local inhalational tolerance seen with chronic inhalational exposure to antigen. METHODS: Wildtype and IL-10(-/-) mice were sensitized with ovalbumin (OVA) and then challenged with daily OVA inhalations for 10 days or 6 weeks. RESULTS: The 10-day animals developed allergic airway disease, characterized by BAL eosinophilia, histologic airway inflammation and mucus secretion, methacholine hyperresponsiveness, and OVA-specific IgE production. These changes were more pronounced in IL-10(-/-) mice. The 6-week IL-10(-/-) and wildtype animals both developed inhalational tolerance, with resolution of airway inflammation but persistence of OVA-specific IgE production. CONCLUSION: IL-10 may have anti-inflammatory effects in the acute stage of murine allergic airways disease, but the cytokine does not mediate the development of local inhalational tolerance with chronic antigen exposure. 相似文献
7.
Airway dysfunction in asthma is characterized by hyperresponsiveness, heterogeneously narrowed airways, and closure of airways. To test the hypothesis that airway constriction in ovalbumin (OVA)-sensitized OVA-intranasally challenged (OVA/OVA) mice produces mechanical responses that are similar to those reported in asthmatic subjects, respiratory system resistance (Rrs) and elastance (Edyn,rs) spectra were obtained in OVA/OVA and control mice during intravenous methacholine (MCh) infusions. In control mice, MCh at 1,700 microg x kg(-1) x min(-1) produced 1) a 495 and 928% increase of Rrs at 0.5 Hz and 19.75 Hz, respectively, 2) a 33% rise in Edyn,rs at 0.5 Hz, and 3) a mild frequency (f)-dependent increase of Edyn,rs. The same MCh dose in OVA/OVA mice produced 1) elevations of Rrs at 0.5 Hz and 19.75 Hz of 1,792 and 774%, respectively, 2) a 390% rise in Edyn,rs at 0.5 Hz, and 3) marked f-dependent increases of Edyn,rs. During constriction, the f dependence of mechanics in control mice was consistent with homogeneous airway narrowing; however, in OVA/OVA mice, f dependence was characteristic of heterogeneously narrowed airways, closure of airways, and airway shunting. These mechanisms amplify the pulmonary mechanical responses to constrictor stimuli at physiological breathing rates and have important roles in the pathophysiology of human asthma. 相似文献
8.
BackgroundXenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV. ResultsImmunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1∶1024 and 1∶464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations. ConclusionsVaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans. 相似文献
9.
Decorin (Dcn) is an extracellular matrix proteoglycan, which affects airway mechanics, airway-parenchymal interdependence, airway smooth muscle proliferation and apoptosis, and transforming growth factor-β bioavailability. As Dcn deposition is differentially altered in asthma, we questioned whether Dcn deficiency would impact the development of allergen-induced asthma in a mouse model. Dcn(-/-) and Dcn(+/+) mice (C57Bl/6) were sensitized with ovalbumin (OA) and challenged intranasally 3 days/wk × 3 wk. After OA challenge, mice were anesthetized, and respiratory mechanics measured under baseline conditions and after delivery of increasing concentrations of methacholine aerosol. Complex impedance was partitioned into airway resistance and tissue elastance and damping. Bronchoalveolar lavage was performed. Lungs were excised, and tissue sections evaluated for inflammatory cell influx, α-smooth muscle actin, collagen, biglycan, and Dcn deposition. Changes in TH-2 cytokine mRNA and protein were also measured. Airway resistance was increased in OA-challenged Dcn(+/+) mice only (P < 0.05), whereas tissue elastance and damping were increased in both OA-challenged Dcn(+/+) and Dcn(-/-), but more so in Dcn(+/+) mice (P < 0.001). Inflammation and collagen staining within the airway wall were increased with OA in Dcn(+/+) only (P < 0.001 and P < 0.01, respectively, vs. saline). IL-5 and IL-13 mRNA were increased in lung tissue of OA-challenged Dcn(+/+) mice. Dcn deficiency resulted in more modest OA-induced hyperresponsiveness, evident at the level of the central airways and distal lung. Differences in physiology were accompanied by differences in inflammation and remodeling. These findings may be, in part, due to the well-described ability of Dcn to bind transforming growth factor-β and render it less bioavailable. 相似文献
10.
In this study, we attempt to determine whether lycopene regulates inflammatory mediators in the ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lycopene before the last OVA challenge. Administration of lycopene significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Administration of lycopene also resulted in a significant inhibition of the infiltration of inflammatory immunocytes into the bronchoalveolar lavage, and attenuated the gelatinolytic activity of matrix metalloproteinase-9 and the expression of eosinophil peroxidase. Additionally, lycopene reduced the increased levels of GATA-3 mRNA level and IL-4 expression in OVA-challenged mice. However, it increased T-bet mRNA level and IFN-γ expression in lycopene-challenged mice. These findings provide new insight into the immunopharmacological role of lycopene in terms of its effects in a murine model of asthma. 相似文献
11.
Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms. 相似文献
13.
Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergenspecific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma. 相似文献
14.
Dendritic cells (DCs) act as APCs in the airway and play a critical role in allergy. Cysteinyl leukotrienes (cysLTs) synthesized from arachidonic acid are primary mediators of immediate asthmatic reaction. The aim of this study was to investigate the effects of cysLTs on Dermatophagoides farinae (Der f)-pulsed mouse myeloid DCs in inducing allergic airway inflammation in vitro and in vivo. Control DC (medium-pulsed), Der f-pulsed DC, cysLT-pulsed DC, Der f- and cysLT-pulsed DC, and Der f-pulsed and cysLT receptor antagonist (LTRA)-treated DC were prepared from murine bone marrow, and the production of cytokines ws compared. Subsequently, these DCs were intranasally instilled into another group of naive mice, followed by intranasal Der f challenge to induce allergic airway inflammation in vivo. Der f-pulsed DC produced significantly higher amounts of IL-10 and IL-12 compared with control DC. Der f- and cysLT-pulsed DC further increased IL-10 production compared with Der f-pulsed DC. In contrast, treatment of Der f-pulsed DC with LTRA increased IL-12 and decreased IL-10. Intranasal instillation of Der f-pulsed DC resulted in airway eosinophilia associated with a significant rise in IL-5 levels in the airway compared with control DC. Pulmonary eosinophilia and excess IL-5 were further enhanced in Der f- and cysLT-pulsed DC-harboring mice. In contrast, Der f-pulsed and LTRA-treated DC significantly inhibited airway eosinophilia, reduced IL-5, and increased IFN-gamma in the airway. Our results suggest that cysLTs play an important role in the development of allergic airway inflammation by regulating the immunomodulatory functions of DCs. 相似文献
15.
Asthma is an allergic disease characterized by chronic airway eosinophilia and pulmonary infiltration of lymphocytes, particularly of the Th2 subtype, macrophages and mast cells. Previous studies have shown a pivotal role for sphingosine kinase (SphK) on various proinflammatory cells, such as lymphocyte and eosinophil migration and mast cell degranulation. We therefore examined the roles of SphK in a murine model of allergic asthma. In mice previously sensitized to OVA, i.p. administration of N,N-dimethylsphingosine (DMS), a potent SphK inhibitor, significantly reduced the total inflammatory cell infiltrate and eosinophilia and the IL-4, IL-5, and eotaxin levels in bronchoalveolar lavage fluid in response to inhaled OVA challenge. In addition, DMS significantly suppressed OVA-induced inflammatory infiltrates and mucus production in the lungs, and airway hyperresponsiveness to methacholine in a dose-dependent manner. OVA-induced lymphocyte proliferation and IL-4 and IL-5 secretion were reduced in thoracic lymph node cultures from DMS-treated mice. Moreover, similar reduction in inflammatory infiltrates, bronchoalveolar lavage, IL-4, IL-5, eotaxin, and serum OVA-specific IgE levels was observed in mice with SphK1 knock-down via small interfering RNA approach. Together, these data demonstrate the therapeutic potential of SphK modulation in allergic airways disease. 相似文献
17.
We have studied murine models of asthma using FcepsilonRIalpha-chain-deficient (FcepsilonRIalpha(-/-)) mice to investigate the role of IgE-dependent mast cell activation in these models. When mice were either 1) immunized once with OVA in alum i.p. and then challenged with OVA intranasally, or 2) repeatedly immunized with OVA in the absence of adjuvant and subsequently challenged with nebulized OVA, FcepsilonRalpha(-/-) mice had significantly fewer eosinophils and lower IL-4 levels in their bronchoalveolar lavage fluid compared with wild-type mice. When mice were given anti-IL-5 antibody before OVA challenge in protocol 1, eosinophilic infiltration into the airways was significantly suppressed in both genotypes, but only FcepsilonRIalpha(-/-) mice showed significantly reduced airway hyperresponsiveness (AHR). In addition, when mice immunized and challenged with OVA also received a late OVA provocation at a higher concentration and were then exposed to methacholine, only wild-type mice developed a substantial increase in AHR. Since FcepsilonRI is expressed mainly on mast cells in mouse airways, we conclude that IgE-dependent activation of this cell type plays an important role in the development of allergic airway inflammation and AHR in mice. The models used may be of value for testing inhibitors of IgE or mast cells for development of therapeutic agents for human asthma. 相似文献
18.
WSX-1 (IL-27R) is a class I cytokine receptor with homology to gp130 and IL-12 receptors and is typically expressed on CD4+ T lymphocytes. Although previous reports have clarified that IL-27/WSX-1 signaling plays critical roles in both Th1 differentiation and attenuation of cell activation and proinflammatory cytokine production during some bacterial or protozoan infections, little is known about the importance of WSX-1 in cytokine-mediated diseases of allergic origin. To this aim, we took advantage of WSX-1-deficient (WSX-1(-/-)) mice and induced experimental asthma, in which Th2 cytokines are central modulators of the pathology. OVA-challenged WSX-1(-/-) mice showed marked enhancement of airway responsiveness with goblet cell hyperplasia, pulmonary eosinophil infiltration, and increased serum IgE levels compared with wild-type mice. Production of Th2 cytokines, which are largely responsible for the pathogenesis of asthma, was augmented in the lung or in the culture supernatants of peribronchial lymph node CD4+ T cells from WSX-1(-/-) mice compared with those from wild-type mice. Surprisingly, IFN-gamma production was also enhanced in WSX-1(-/-) mice, albeit at a low concentration. The cytokine overproduction, thus, seems independent from the Th1-promoting property of WSX-1. These results demonstrated that IL-27/WSX-1 also plays an important role in the down-regulation of airway hyper-reactivity and lung inflammation during the development of allergic asthma through its suppressive effect on cytokine production. 相似文献
19.
Invariant or Type 1 NKT cells (iNKT cells) are a unique population of lymphocytes that share characteristics of T cells and
natural killer (NK) cells. Various studies have shown that positive costimulatory pathways such as the CD28 and CD40 pathways
can influence the expansion and cytokine production by iNKT cells. However, little is understood about the regulation of iNKT
cells by negative costimulatory pathways. Here, we show that in vivo activation with α-GalCer results in increased cytokine
production and expansion of iNKT cells in the absence of programmed cell death ligand-1 (PD-L1, B7-H1, and CD274). To study
whether PD-L1 deficiency on NKT cells would enhance antigen-specific T-cell responses, we utilized CD8 + OT-1 OVA transgenic T cells. α-GalCer enhanced the expansion and cytokine production of OT-1 CD8 + cells after adoptive transfer into wild-type recipients. However, this expansion was significantly enhanced when OT-1 CD8 + T cells were adoptively transferred into PD-L1 −/− recipients. To extend these results to a tumor model, we used the B16 melanoma system. PD-L1 −/− mice given dendritic cells loaded with antigen and α-GalCer had a significant reduction in tumor growth and this was associated
with increased trafficking of antigen-presenting cells and CD8 + T cells to the tumors. These data demonstrate that abrogating PDL1:PD-1 interactions during the activation of iNKT cells
amplifies an anti-tumor response when coupled with DC vaccination. 相似文献
20.
Background: CD93 is a membrane-associated glycoprotein, which can be released in a soluble form (sCD93) into the serum. CD93 has received renewed attention as a candidate biomarker of inflammation in various inflammatory and immune-mediated diseases, including asthma. Objective: We aimed to evaluate the effects of airway inflammation on CD93 levels in murine models. Methods: We established an ovalbumin (OVA)-induced acute asthma murine model (OVA model) and a lipopolysaccharide (LPS)-induced airway inflammation murine model (LPS model). Dexamethasone was administered by gavage to attenuate the airway inflammation. Results: The OVA model demonstrated typical allergic asthma features with increased airway hyper-responsiveness, inflammatory cell infiltration, increased Th2 cytokine levels, compared to the control group. CD93 levels were decreased in lung homogenates and, respiratory epithelial cells, whereas serum sCD93 levels were increased in the OVA model, as compared to the control group. Dexamethasone reversed these effects of OVA. In contrast, in the LPS model, CD93 levels were not affected in neither respiratory epithelial cells nor serum. Conclusions: Our findings demonstrate the potential of using sCD93 as a biomarker for allergic asthma. 相似文献
|