首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hypothetic mechanism explaining the influence of various neuromodulators and modifiable disynaptic inhibition on the long-term potentiation and depression (LTP and LTD) of excitatory inputs to granule and pyramidal hippocampal cells is proposed. According to this mechanism, facilitation of the LTD/LTP of excitatory inputs to an inhibitory interneuron caused by the action of a neuromodulator on a receptor bound with Gi/0/(Gs or Gq/11) protein can reduce/augment the GABA release, weaken/intensify the target cell inhibition, and promote the induction of the LTP/LTD of excitatory inputs to this cell. In the absence of the inhibition, the same neuromodulator would promote the LTD/LTP induction in the target cell by activating the same receptor types. The resulting effect of a neuromodulator on a target cell depends on the ratio between the "strengths" of its excitatory and inhibitory inputs, on the presence of receptors of the same or different types at the interneuron and the target cell, and on the neuromodulator concentration due to its different affinity for receptors, interaction with which provide its influence on postsynaptic processes in opposite directions. The consequences of suggested mechanism are in agreement with the known experimental data.  相似文献   

2.
A mechanism underlying the effects of neuromodulators on long-term changes in the efficacy of excitatory and inhibitory inputs to dopaminergic and inhibitory cells of the substantia nigra and ventral tegmental area is suggested. According to this mechanism, activation of Gi/0 protein-coupled dopamine D2 autoreceptors and opioid kappa (mu) receptors on dopaminergic (inhibitory) cells promotes the LTD of excitatory inputs to these cells and decrease in their activity. Activation of Gq/11 protein-coupled alpha1 adrenoreceptors, muscarinic M1, neurokinin NK3 (alpha1, M3, NK1, serotonin 5-HT2) receptors on dopaminergic (inhibitory) cells as well as activation of Gs protein-coupled D1 receptors on inhibitory cells promotes the LTP of excitatory inputs to these cells and increase in their activity. Augmenting (lowering) GABA release can be provided by activation of presynaptic D1 and M3 receptors (mu, 5-HT1, and adenosine A1) receptors. Increase (decrease) in GABA concentration due to modulation of inhibitory cell activity and/or GABA release will promote the induction of LTD (LTP) of excitatory inputs to target dopamine cells. The model agree with known experimental data describing the involvement of neuromodulators in modification of dopamine cell activity and dopamine release. The suggested model can be useful in understanding the operation of neuronal networks, which include the basal ganglia.  相似文献   

3.
A mechanism of opioid and substance P-mediated modulation of a cortical signal transduction through the striatum is suggested. According to this mechanism, an activation of postsynaptic receptors, bound to Gi/0 proteins, should increase the magnitude of NMDA-dependent (NMDA-independent) LTD (LTP) of excitatory inputs and LTP (LTD) of inhibitory inputs to all types of striatal cells. An activation of postsynaptic receptors, bound to Gs or Gq/11 proteins, should oppositely modulate LTD and LTD in the same inputs. It follows from the model that the negative feedback loops can held the activity of a striatal output cells at the stable level due to recurrent activation by endogenous opioids of delta receptors on striatopallidal cells, mu and kappa receptors on striatonigral cells of striosomes and matrix, respectively, and subsequent suppression of the efficacy of corticostriatal inputs. Cholinergic interneurons, affected by enkephalin and substance P, are also involved in these feedback loops. We hypothesized that an activation of mu and delta receptors and/or inactivation of kappa receptors on striatal spiny cells might alleviate parkinsonian symptoms and recover locomotor activity.  相似文献   

4.
Silkis I 《Bio Systems》2001,59(1):7-14
A possible mechanism underlying the modulatory role of dopamine, adenosine and acetylcholine in the modification of corticostriatal synapses, subsequent changes in signal transduction through the "direct" and "indirect" pathways in the basal ganglia and variations in thalamic and neocortical cell activity is proposed. According to this mechanism, simultaneous activation of dopamine D1/D2 receptors as well as inactivation of adenosine A1/A(2A) receptors or muscarinic M4/M1 receptors on striatonigral/striatopallidal inhibitory cells can promote the induction of long-term potentiation/depression in the efficacy of excitatory cortical inputs to these cells. Subsequently augmented inhibition of the activity of inhibitory neurons of the output nuclei of the basal ganglia through the "direct" pathway together with reduced disinhibition of these nuclei through the "indirect" pathway synergistically increase thalamic and neocortical cell firing. The proposed mechanism can underlie such well known effects as "excitatory" and "inhibitory" influence of dopamine on striatonigral and striatopallidal cells, respectively; the opposite action of dopamine and adenosine on these cells; antiparkinsonic effects of dopamine receptor agonists and adenosine or acetylcholine muscarinic receptor antagonists.  相似文献   

5.
Kruglikov I  Rudy B 《Neuron》2008,58(6):911-924
Neuromodulators such as acetylcholine, serotonin, and noradrenaline are powerful regulators of neocortical activity. Although it is well established that cortical inhibition is the target of these modulations, little is known about their effects on GABA release from specific interneuron types. This knowledge is necessary to gain a mechanistic understanding of the actions of neuromodulators because different interneuron classes control specific aspects of excitatory cell function. Here, we report that GABA release from fast-spiking (FS) cells, the most prevalent interneuron subtype in neocortex, is robustly inhibited following activation of muscarinic, serotonin, adenosine, and GABA(B) receptors--an effect that regulates FS cell control of excitatory neuron firing. The potent muscarinic inhibition of GABA release from FS cells suppresses thalamocortical feedforward inhibition. This is supplemented by the muscarinic-mediated depolarization of thalamo-recipient excitatory neurons and the nicotinic enhancement of thalamic input onto these neurons to promote thalamocortical excitation.  相似文献   

6.
Barbiturates have been shown to be competitive antagonists at A1 adenosine receptors in radioligand binding studies. The present study investigates the effects of pentobarbital on the A1 receptor-mediated inhibition of neurotransmitter release from rabbit hippocampal slices. The inhibition of the electrically evoked release of [3H]noradrenaline by the A1 receptor agonist (R)-N6-phenylisopropyladenosine (R-PIA) was antagonized by pentobarbital with an apparent pA2 value of 3.5. Low concentrations of pentobarbital alone altered neither basal nor evoked release of [3H]noradrenaline, whereas 1,000 microM pentobarbital enhanced the basal and reduced the evoked release. In the presence of 8-phenyltheophylline, pentobarbital (200 microM and 1,000 microM) reduced the evoked noradrenaline release. Pentobarbital also antagonized the inhibition of [3H]acetylcholine release by R-PIA. In contrast to the noradrenaline release model, the evoked release of acetylcholine was enhanced by the presence of pentobarbital (50-500 microM), an effect that was lost in the presence of 8-phenyltheophylline. These results indicate that pentobarbital, in addition to a direct inhibitory action at higher concentrations, has a facilitatory effect on neurotransmitter release by blocking presynaptic A1 adenosine receptors. The possible relevance of these findings for the excitatory effects of barbiturates is discussed.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) and adenosine are widely recognized as neuromodulators of glutamatergic transmission in the adult brain. Most BDNF actions upon excitatory plasticity phenomena are under control of adenosine A2A receptors (A2ARs). Concerning gamma-aminobutyric acid (GABA)-mediated transmission, the available information refers to the control of GABA transporters. We now focused on the influence of BDNF and the interplay with adenosine on phasic GABAergic transmission. To assess this, we evaluated evoked and spontaneous synaptic currents recorded from CA1 pyramidal cells in acute hippocampal slices from adult rat brains (6 to 10 weeks old). BDNF (10–100 ng/mL) increased miniature inhibitory postsynaptic current (mIPSC) frequency, but not amplitude, as well as increased the amplitude of inhibitory postsynaptic currents (IPSCs) evoked by afferent stimulation. The facilitatory action of BDNF upon GABAergic transmission was lost in the presence of a Trk inhibitor (K252a, 200 nM), but not upon p75NTR blockade (anti-p75NTR IgG, 50 μg/mL). Moreover, the facilitatory action of BDNF onto GABAergic transmission was also prevented upon A2AR antagonism (SCH 58261, 50 nM). We conclude that BDNF facilitates GABAergic signaling at the adult hippocampus via a presynaptic mechanism that depends on TrkB and adenosine A2AR activation.  相似文献   

8.
Presynaptic inhibition of neurotransmitter release is thought to be mediated by a reduction of axon terminal Ca2+ current. We have compared the actions of several known inhibitors of evoked glutamate release with the actions of the Ca2+ channel antagonist Cd2+ on action potential-independent synaptic currents recorded from CA3 neurons in hippocampal slice cultures. Baclofen and adenosine decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) without affecting the distribution of their amplitudes. Cd2+ blocked evoked synaptic transmission, but had no effect on the frequency or amplitude of either mEPSCs or inhibitory postsynaptic currents (IPSCs). Inhibition of presynaptic Ca2+ current therefore appears not to be required for the inhibition of glutamate release by adenosine and baclofen. Baclofen had no effect on the frequency of miniature IPSCs, indicating that gamma-aminobutyric acid B-type receptors exert distinct presynaptic actions at excitatory and inhibitory synapses.  相似文献   

9.
In view of the available published data concerning various concentration of neuromodulators in the brain during paradoxical sleep and wakefulness and the evidence for the influences of neuromodulators on efficiency of synaptic inputs to hippocampal neurons it is concluded that during paradoxical sleep, increase in concentrations of acetylcholine, cortisol, and dopamine and simultaneous decrease in serotonin and noradrenaline levels could synergistically lead to essential depression of efficacy of synaptic transmission in the polysynaptic pathway through the hippocampus (i.e. in the perforant path to dentate gyrus, from the dentate gyrus to CA3 area, from CA3 to CA1 area and from CA1 to the subiculum) but potentiation of the efficacy of the perforant input to pyramids of CA1 and CA3 areas and increase in efficacy of associative connections between CA3 neurones. The specified changes in functioning of the hippocampal loop can underlie differences in storing and extraction of information from memory during paradoxical sleep as compared to wakefulness.  相似文献   

10.
Silkis I 《Bio Systems》2000,54(3):141-149
The model of three-layer olivary-cerebellar neural network with modifiable excitatory and inhibitory connections between diverse elements is suggested. The same Hebbian modification rules are proposed for Purkinje cells, granule (input) cells, and deep cerebellar nuclei (output) cells. The inverse calcium-dependent modification rules for these cells and hippocampal/neocortical neurones or Golgi cells are conceivably the result of the involvement of cGMP and cAMP in postsynaptic processes. The sign of simultaneous modification of excitatory and inhibitory inputs to a cell is opposite and determined by the variations in pre- and/or postsynaptic cell activity. Modification of excitatory transmission between parallel fibers and Purkinje cells, mossy fibers and granule cells, and mossy fibers and deep cerebellar nuclei cells essentially depends on inhibition effected by stellate/basket cells, Golgi cells and Purkinje cells, respectively. The character of interrelated modifications of diverse synapses in all three layers of the network is influenced by olivary cell activity. In the absence (presence) of a signal from inferior olive, the long-term potentiation (depression) in the efficacy of a synapse between input mossy fiber and output cell can be induced. The results of the suggested model are in accordance with known experimental data.  相似文献   

11.
A mechanism of the influence of dopamine-evoked modulation of lateral inhibition in the striatum on a conditioned selection of motor activity is proposed. According to suggested modulation rules for inhibitory transmission, action of dopamine on postsynaptic D1 (D2) receptors on striatonigral (striatopallidal) cells promotes long-term depression (potentiation) of inhibitory inputs simultaneously with potentiation (depression) of "strong" excitatory inputs that open NMDA channels on these neurons. If excitatory inputs are "weak" and NMDA channels are closed, modulation rules have opposite signs. Activation of presynaptic D2 (D1) receptors results in a decrease (increase) in GABA release from striatopallidal (striatonigral) axon terminals that innervate striatonigral (striatopallidal) cells. Thereof, dopamine-evoked modulation of lateral inhibition simultaneously strengthens both potentiation (depression) of excitatory inputs to "strongly" activated striatonigral (striatopallidal) neurons rising (reducing) their activity, and depression (potentiation) of excitatory inputs to "weakly" activated striatonigral (striatopallidal) neurons reducing (rising) their activity. Subsequent reorganization of neuronal activity in the cortico-basal-ganglia-thalamocortical loop promotes a conditioned selection of motor reaction because of the further increase (decrease) in activity of those motocortical neurons that "strongly" ("weakly") activated the striatum during dopamine release in response to conditioned stimulus.  相似文献   

12.
A possible mechanism of influence of neuromodulators on interdependent activity of neurons in the diverse basal ganglia nuclei is suggested. According to modulation rules, an activation of postsynaptic Gs- or Gq/11-(Gi/0-) protein coupled receptors promotes induction of long-term potentiation (depression) of excitatory inputs to different neurons and augmentation (lowering) of their activity; an activation of presynaptic Gs- or Gq/11-(Gi/0-) protein coupled receptors promotes a rise (decrease) of release of GABA and co-peptides from striatal terminals and glutamate release from subthalamic terminals in the globus pallidus and output nuclei. It follows from the modulation rules that, since identical receptors are present on striatal neuron and their axon terminals, effects of neuromodulator action in diverse basal ganglia nuclei can be summarized. Neuromodulators released from striato-nigral and striato-pallidal fibers could promote interdependent activity of neurons in "direct" and "indirect" pathways through the basal ganglia due to convergence of these fibers on cholinergic interneurons and pallido-striatal cells.  相似文献   

13.
The neurotransmitters mediating the synaptic interactions in the pyloric system of the stomatogastric ganglion of a stomatopod, Squilla oratoria, were examined. Putative transmitters were applied iontophoretically to the pyloric cells. Glutamate and GABA produced inhibitory responses in all motoneurons but acetylcholine did not. These inhibitory responses were due to increases in conductance to either K+ or Cl or both, and blocked by picrotoxin. The inhibitory postsynaptic potentials evoked by the constrictor and dilator neurons were different in their time courses, reversal potentials, ion selectivities, and picrotoxin sensitivities. Glutamate is a transmitter candidate for inhibitory synapses made among the pyloric cells as well as for their neuromuscular junctions. In some cells, glutamate and acetylcholine evoked excitatory responses which were blocked by joro spider toxin and by tubocurare, respectively. They mediated the extrinsic inputs to modulate the pyloric rhythm. The transmitter, glutamate, is conserved in the ganglion neurons between stomatopods and decapods during evolution. Use of two transmitters, glutamate and acetylcholine, may have evolved in decapods, while the ionic mechanism is preserved in both orders. The neuromodulators, acetylcholine and -aminobutyric acid, are conserved between both orders. Glutamate may be used as the neuromodulator in stomatopods.Abbreviations ACh acetylcholine - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - Glu glutamate - IC inferior cardiac - IPSP inhibitory postsynaptic potential - JSTX joro spider toxin - LP lateral pyloric - pcp posterior cardiac plate - PTX picrotoxin  相似文献   

14.
Pavlovian conditioning has been considered as one of the principal experimental approaches to understanding such complex brain functions as learning and memory. Use-dependent alterations in synaptic efficacy are believed to form the basis for these functions. The algorithm of synapse modification proposed by D. Hebb as early as 1949 is the coincident activation of pre- and postsynaptic neurons. The present review considers the evolution of experimental protocols which were used to reveal the manifestations of Hebb-type plasticity in the synaptic inputs to neocortical and hippocampal neurons. Special attention is focused on long-term modifications of synaptic efficacy in the hippocampus as a possible neuronal mechanism of learning and the role of disinhibition in their development. The effects of various neuromodulators on hippocampal long-term potentiation are considered. It is suggested that along with their involvement in disinhibition processes these substances may control the Hebb-type plasticity through intracellular second messenger systems.  相似文献   

15.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

16.
On the basis of earlier suggested unitary mechanism of synaptic plasticity opposite effects of adenosine and dopamine on the cAMP concentration in striatal spinal cells can emphasize the well known antagonistic interactions between A2A and D2 receptors on striatopallidal cells and between A1 and D1 receptors on striatonigral cells. This is due to that both the dopamine agonist and adenosine antagonist must promote the induction of long-term potentiation/depression of efficacy of excitatory cortical inputs to striatopallidal/striatonigral cells. This modification must lead to synergistic disinhibition of thalamic cells via "direct" and "indirect" pathways through basal ganglia and subsequent strengthening of motor activity.  相似文献   

17.
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.  相似文献   

18.
O'Kane EM  Stone TW 《Neuro-Signals》2004,13(6):318-324
Activation of adenosine A1 receptors raised spike thresholds and induced a dissociation of excitatory postsynaptic potential (EPSP) spike coupling in hippocampal pyramidal neurones. This effect could be prevented by activation of A2A adenosine receptors. The A1 receptor agonist N6-cyclopentyladenosine caused a dissociation of the EPSP spike coupling recorded extracellularly and increased the threshold for spike generation measured intracellularly. These effects were prevented by the A2A receptor agonist CGS21680. A series of agents interfering with adenylate cyclase activity, protein kinase A or C, or nitric oxide synthase had no effect on these responses to N6-cyclopentyladenosine. Superfusion with barium or glibenclamide prevented both the dissociation of EPSP spike coupling and the increase of spike threshold. It is concluded that a barium- and glibenclamide-sensitive potassium current may be involved in the postsynaptic effects of A1 receptors on spike threshold, and it is suggested that a similar suppression of a potassium current by A2A receptors could underlie the inhibition of A1 receptor responses.  相似文献   

19.
The effect of serotoninergic (serotonin, 1-trytophane, imipramime, methysergide), catecholaminergic (noradrenaline, amphetamine, dopamine, 1-DOPA, iproniazid) and cholinergic drugs (physostigmine, atropine, benactyzine) on emotional reactions and orienting-motor activity, as well as the effect of these drugs on shock-elicited aggressiveness enhanced by intraamygdaloid microinjection of acetylcholine was investigated in experiments on amygdalectomized male albino rats. In amygdalectomized animals, as compared to control false-operated rats, the stimulating effect of amphetamine, imipramine, tryptophane and m-cholinoblockators was enhanced and their inhibitory effect was weakened. Bilateral microinjection of cholinergic drugs (acetylcholine, physostigmine and carbacholine) and noradrenaline into the amygdaloid body intensified emotional reactivity and aggressiveness. Microinjection of serotonin and dopamine inhibited aggressiveness and caused facilitaion of orienting-motor activity. It is suggested that the adrenergic system intensifies and serotoninergic system depresses the m-cholinergic trigger mechanism of aggressive behavior in limbico-diencephalic structures.  相似文献   

20.
Pickford  J.  Apps  R.  Bashir  Z. I. 《Neurochemical research》2019,44(3):627-635

How the cerebellum carries out its functions is not clear, even for its established roles in motor control. In particular, little is known about how the cerebellar nuclei (CN) integrate their synaptic and neuromodulatory inputs to generate cerebellar output. CN neurons receive inhibitory inputs from Purkinje cells, excitatory inputs from mossy fibre and climbing fibre collaterals, as well as a variety of neuromodulatory inputs, including cholinergic inputs. In this study we tested how activation of acetylcholine receptors modulated firing rate, intrinsic properties and synaptic transmission in the CN. Using in vitro whole-cell patch clamp recordings from neurons in the interpositus nucleus, the acetylcholine receptor agonist carbachol was shown to induce a short-term increase in firing rate, increase holding current and decrease input resistance of interpositus CN neurons. Carbachol also induced long-term depression of evoked inhibitory postsynaptic currents and a short-term depression of evoked excitatory postsynaptic currents. All effects were shown to be dependent upon muscarinic acetylcholine receptor activation. Overall, the present study has identified muscarinic receptor activation as a modulator of CN activity.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号