首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work (Lock et al., J. Pharm . Exp. Ther. 215:156, 1980) has shown that conventional screening procedures for vasoactive PGI2 analogs were little value in predicting pulmonary vasodilator activity in the newborn lamb. To gain a better insight into the structural requirements for pulmonary vasoactivity and possibly identify useful compounds for the management of neonatal pulmonary hypertensive disorders, we have tested the following PGI2 analogs in normoxic and hypoxic newborn lambs: 15(S)-9-deoxy-15-methyl-9 alpha,6- nitrilo -PGF1 (analog I); 9-deoxy-9 alpha,5- nitrilo -PGF1 (analog II); (6S, 15S)-15-methyl-PGI2 (analog III); and ( 6R , 15S)-15-methyl-PGI1 (analog IV). A prostaglandin analog mimicking PGI2 (compound BW245C ; (+/-)-5-(6- carboxyhexyl )-1-(3-cyclohexyl-3-hydroxypropyl)hydantoin ) was tested as well. Compounds were injected into a branch pulmonary artery and any local pulmonary effect could be assessed from the change in the ratio of blood flow to the injected lung over total flow. None of the analogs tested proved to be a selective pulmonary dilator. BW245C was a potent peripheral vasodilator (threshold around 0.5 microgram/kg) and indirectly lowered pulmonary vascular resistance through its systemic effects. Analog I also dilated the systemic circulation, but only at the highest dose tested (100 micrograms/kg). The latter finding is surprising because it was previously shown that the parent, non-methylated compound is a fairly potent and selective pulmonary vasodilator. Analog II and IV were inactive at a dose up to, respectively, 30 and 20 micrograms/kg. Analog III, on the other hand, weakly constricted the systemic circulation at a dose of 10 micrograms/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Several bisdeoxy PGE1 analogs are potent, competitive antagonists of PGE1-induced colonic contractions in the gerbil. The efficacy of these analogs in antagonizing PGE1-mediated systemic vasodepression has not been previously demonstrated. In this study, serial doses of PGs were administered before, during and after infusion of d,1–11, 15-bisdeoxy PGE1. Bolus injections of PGE1 (3.0 μk/kg), PGE2 (3.0 μg/kg) and PGI2 (0.3 μg/kg) were administered via the right external jugular vein to male Wistar rats. PGE1, PGE2 and PGI2 decreased systemic arterial pressure 41%, 38% and 38%, respectively. The PGE1 analog was infused (200 μg/kg/min) through the right common carotid artery. The analog itself had no effect on mean systemic arterial pressure, but maximum reversible inhibition (51%) of PGE1-mediated vasodepression occurred following a 50 minute infusion. No significant effect of the PGE1 analog was observed on PGE2 or PGI2-mediated vasodepression. These data demonstrate the ability to antagonize PGE1-mediated vasodepression, and to differentiate the vascular responses to PGE1 and PGE2 or PGI2.  相似文献   

3.
The effects of a stable PGI2 analog, 13, 14-dehydro-PGI2 methyl ester and several vasoactive hormones were compared in the feline intestinal vascular bed under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. The PGI2 analog decreased perfusion pressure in a dose-dependent fashion when injected in the range of dose of 0.03–3 μg and was quite similar to PGE2 whereas isoproterenol was somewhat more potent as a vasodilator in the feline intestinal vascular bed. The present data show that 13, 14-dehydro-PGI2 methyl ester has potent vasodilator activity in the intestinal vascular bed.  相似文献   

4.
The effects of PGI2 and two analogs Iloprost and ZK 96480 were examined on isolated human pulmonary muscle preparations. High concentrations of these agents reduced the basal tone in all types of preparations. In addition, they relaxed tissues which had been maximally contracted with histamine (50 μM). PGI2 was more potent on pulmonary arterial muscle preparations (pD2 value : 6.33, n = 3) than on bronchial muscles. The relaxations induced by PGI2 in bronchial preparations were quite variable, that is, some tissues relaxed while others did not. The analogs also relaxed arterial preparations and the pD2 values were approximately the same (Iloprost : 7.42, n = 4 and ZK 96480 : 7.48, n = 4). The isolated human pulmonary vascular preparations were approximately 10-fold more sensitive to the analogs than bronchial muscle preparations. In bronchial tissues we noted that the PGI2 relaxant effect was spontaneously reversed with time, an activity not observed with both analogs. A pretreatment of the bronchial tissues with indomethacin (1.7 μM) did not reduce the variations observed with PGI2 nor modify the transient relaxation observed with this agent. These data demonstrate that vascular tissues from the human lung are considerably more sensitive to these relaxant agonists than bronchial preparations.  相似文献   

5.
A novel carbacyclin derivative (16S)-13,14-dehydro-16,20-dimethyl-3-oxa-18,18,19,19-tetradehydro-6a-carbaprostaglandin-I2 (3-oxa-analogue) has been synthesized in order to find chemically and metabolically stable prostacyclin-memetics with a potency equal or even superior to PGI2.The 3-oxa-analogue was found to be stabilized against β-oxidation, a main metabolic degradation step also for chemically stable PGI2-analogues. The compound is orally available and displays a long duration of 4,5 – 48 h of antiaggregatory and hypotensive action. The 3-oxa-analogue inhibits ADP-induced platelet aggregation with an IC50 of 3.0 nM. Following intravenous application the 3-oxa-analogue lowers diastolic blood pressure in a dose dependent manner, the ED20 being 0.1 – 0.2 μg/kg after injection and ≤ 0.05 μg/kg/min after infusion respectively. In vivo platelet aggregation is inhibited after i.v. infusion of the 3-oxa-analogue with an IC50 of 0.037 μg/kg/min. As compared to Iloprost, the 3-oxa-analogue is 5 – 12 fold more potent with respect to in vivo hypotensive and anti-aggregatory effects.The results of the present studies indicate that the 3-oxa-analogue has a pharmacological profile comparable to prostacyclin (PGI2) and Iloprost. Due to the fact that the 3-oxa-analogue is chemically and metabolically stable, long term oral treatment can be achieved in clinical conditions in which PGI2 and Iloprost have already been shown to be therapeutically useful principles.  相似文献   

6.
Fragments of chopped lung from indomethacin treated guinea-pigs had an anti-aggregating effect when added to human platelet rich plasma (PRP), probably due to the production of prostacyclin (PGI2) since the effect was inhibited by 15-hydroperoxy arachidonic acid (15-HPAA, 10 μg ml−1). Both 15-HPAA (1–20 μg ml−1 min−1) and 13-hydroperoxy linoleic acid (13-HPLA, 20 μg ml−1 min−1) caused a marked enhancement of the anaphylactic release of histamine, slow-reacting substance of anaphylaxis (SRS-A) and rabbit aorta contracting substance (RCS) from guinea-pig isolated perfused lungs. This enhancement was not reversed by the concomitant infusion of either PGI2 (5 μg ml−1 min−1) or 6-oxo-prostaglandin F (6-oxo-PGF, 5 μg ml−1 min−1). Anaphylactic release of histamine and SRS-A from guinea-pig perfused lungs was not inhibited by PGI2 (10 ng - 10 μg ml−1 min−1) but was inhibited by PGE2 (5 and 10 μg ml−1 min−1). Antiserum raised to 5,6-dihydro prostacyclin (PGI1) in rabbits, which also binds PGI2, had no effect on the release of anaphylactic mediators. The fatty acid hydroperoxides may enhance mediator release either indirectly by augmenting thromboxane production or by a direct effect on sensitized cells. Further experiments to distinguish between these alternatives are described in the accompanying paper (27).  相似文献   

7.
Isoproterenol (ISO) was injected in 5 mg/kg i.p. doses to rats, daily for two weeks. We evaluated the developed myocardial hypoxia and necrosis quantitatively by histological methods. To follow the time course of cardioprotection prostacyclin or 7-oxo-PGI2 were injected daily, i.p. 5, 30 min and 1, 2, 3, 4 hours before or after the ISO to groups of ten rats, respectively. Cardioprotection was defined as the reduction of necrotized areas and was expressed as percentage change compared to the control (saline treated) group. 1 μg/kg PGI2 and 50 μ/kg 7-oxo-PGI2+ showed nearly equipotent cardioprotection (37.3±7.9% and 38.3±6.8%, respectively). The peak effect of both compounds appeared when injected prior to ISO in the 120. min but the action of 7-oxo-PGI2 was more prolonged. The different doses of prostacyclin analogs given after the ISO injection were ineffective with the exception of 50 μ/kg 7-oxo-PGI2 (29.75± 5.2 %).  相似文献   

8.
We assessed the effect of a specific thromboxane synthetase inhibitor (an imidazole derivative) on pulmonary hemodynamics and the concentrations of TxB2 (TxA2), 6-keto-PGF (PGI2), and PGF in pulmonary lymph and transpulmonary blood samples following intravenous administration of E. coli endotoxin (1 μg/kg) in sheep. In control animals the rise in pulmonary artery pressure correlated with increases in plasma and lymph TxB2 concentrations and large transpulmonary concentration gradients of this metabolite were measured. In imidazle treated animals both pulmonary hypertension as well as increases in plasma and lymph TxB2 concentrations were substantially reduced. In contrast, peak concentrations of 6-keto-PGF (PGI2) and PGF were severalfold higher than those measured in control animals. This suggests a shunting of endoperoxide metabolism towards prostacyclin and primary prostaglandins and documents the specificity of the thromboxane synthetase inhibitor. Out study provides evidence that endotoxin-induced pulmonary hypertension is mediated by pulmonary synthesis of TxA2.  相似文献   

9.
Intracerebroventricular administration of PGI2 or PGE2 reduced aconitine-induced cardiac arrhythmia in rats. PGF had no antiarrhythmic effect under the same conditions. The ED50 values of PGI2 and E2 were 0.25 μg/kg and 1.1 μg/kg, respectively. Central mechanisms may participate in the antiarrhythmic effect of these PGs.  相似文献   

10.
Prostacyclin (PGI2) therapy has been evaluated in many vascular diseases. However, it is unstable and a potent vasodilator, able to lower blood pressure. Although such effects may be desirable in some situations, they are unwanted in others. ZK36-374 (Schering AG) is a carbacyclin derivatives with a similar action to PGI2; however, it is chemically stable and has less of a hypotensive action.We evaluated the effects of a 4-hour I.V. infusion of ZK36-374 at a maximum dose of 2ng/Kg/min. in ten normal volunteers. Prior to the infusion and at 2 and 4 hours, blood was sampled for estimation of platelet aggregation in both platelet rich plasma and whole blood. β-thromboglobulin, 6-keto-PGF and TXB2 were measuerd by radioimmunoassay, as were other coagulation and rheological tests. The infusion was well tolerated with facial flushing, jaw trismus and some nausea at max dose. Blood pressure and pulse rate were not significantly altered. During infusion of ZK36-374, the rates of platelet aggregation to 2μm AdP and 2μg collagen in PRP were significantly decreased when compared to baseline, as was whole blood aggregation to 2μm ADP and 0.5 μg collagen. βTG also fell significantly, as did the levels of 6-keto-PGF and TXB2. Fibrinolysis, blood viscosity, and red cell deformability were unchanged.ZK36-374 is an effective anti-platelet agent without major toxic or hypotensive effects.  相似文献   

11.
Prostaglandin endoperoxides are formed in the lung as intermediate compounds in the biosynthesis of prostaglandins and thromboxanes. The effects of different doses of two analogs of prostaglandin endoperoxide PGH2 were compared with those of PGF and PGE2 on superfused preparations of isolated trachea, bronchiole, peripheral lung, pulmonary artery and gastrointestinal smooth-muscle tissues. Endoperoxide analogs induced contraction of all smooth-muscle structures in the lung and airways. Compared to PGF, analog I was approximately 71 times as potent on guinea-pig trachea, 214 times as potent on guinea-pig lung, and 57 times as potent on guinea-pig polmunary artery. Analog II was moderately less potent on all tissues than analog I. On gastrointestinal smooth-muscle organs, the PGH2 analogs were generally closer in activity to PGF and PGE2, or even weaker. The findings show that PG endoperoxide vessels, and suggest that the naturally occurring compounds may participate in the mediation of bronchoconstriction and pulmonary vasoconstriction in disease states.  相似文献   

12.
To determine the effects of AA-861 on PGI2 production in guinea-pig lungs, 3 g of guinea-pig lung was chopped in 4 ml of buffer (control group), in buffer with 4 μg/ml indomethacin (indomethacin group) and in buffer with 2.5 × 10−5M AA-861 (AA-861 group). The chopped lungs were incubated for 30 min. 250 μl of incubation medium from each group was assessed before and after 3, 5, 10, 15, 20, 25 and 30 min of incubation. The incubation medium was centrifuged and the supernatant was tested for a PGI2-like substance (PGI2) by platelet aggregation inhibition. PGI2 was produced mainly during the initial 3–5 min of incubation and was decreased thereafter. PGI2 production was almost completely inhibited in the indomethacin group at all of the incubation times and was partially inhibited in the AA-861 group during the initial 3–5 minutes. Endogenous 5-lipoxygenase products generated in the early stages of incubation seem to be involved in PGI2 production in guinea-pig lungs.  相似文献   

13.
12-Hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product released by activated platelets and macrophages, reduced prostacyclin (PGI2) formation in bovine aortic endothelial cultures by as much as 70%. Maximal inhibition required 1 to 2 h to occur and after 2 hr, a concentration of 1 μM 12-HETE produced 80% of the maximum inhibitory effect. 5-HETE and 15-HETE also inhibited PGI2 formation. The inhibition was not specific for PGI2; 12-HETE reduced the formation of all of the radioactive eicosanoids synthesized from [1-14C]arachidonic acid by human umbilical vein endothelial cultures. Inhibition occurred in the human cultures when PGI2 formation was elicited with arachidonic acid, ionophore A23187 or thrombin. These findings suggest that prolonged exposure to HETEs may compromise the antithrombotic and vasodilator properties of the endothelium by reducing its capacity to produce eicosanoids, including PGI2.  相似文献   

14.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3_induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F (6-keto-PGF), an hydrolysis product of PGI1. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF were increased by both hypocapnia and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

15.
Experiments were performed in rats to study the effect of infusion of PGI2, PGE2, and PGF on tubuloglomerular feedback responses (i.e. the change of SNGFR in response to a change of loop of Henle flow rate) in the presence and absence of simultaneous inhibition of endogenous PG synthesis with indomethacin. Infusion of PGI2 or PGE2 at rates that did not alter arterial blood pressure did not significantly modify the magnitude of feedback responses (PGI2) 8.5 μg/hr, PGE2 85 μg/hr). Some inhibition of feedback responses was seen when PGI2 and PGE2 were administered at higher rates were associated with a reduction of blood pressure (PGI2 20 μg/hr, PGE2 200 μg/hr). PGI2 (8.5 μg/hr) and PGE2 (85 μg/hr) largely prevented feedback inhibition induced by indomethacin. When given subsequent to indomethacin PGI2 and PGE2 restored feedback responsiveness almost to normal. In contrast, PGF did not influence feedback inhibition caused by indomethacin. Infusion of PGI2 induced partial restoration of feedback responses in DOCA-salt treated animals in which the feedback system is virtually completely inactive. Our results indicate that availability of PGI2 or PGE2 is necessary for the normal operation of the tubuloglomerular feedback mechanism for control of nephron filtration rate.  相似文献   

16.
The effects of prostaglandins E2 (PGE2), I2 (PGI2) and F2α (PGF2α), arachidonic acid and indomethacin on pressor responses to norepinephrine were examined in conscious rats. Intravenously infused PGE2 (0.3, 1.25 μg/kg/min), PGI2 (50, 100 ng/kg/min), PGF2α (1.8, 5.4 μg/kg/min) and arachidonic acid (0.7, 1.4 mg/kg/min) did not change the basal blood pressure. Both PGE2 and PGI2 significantly attenuated pressor responses to norepinephrine, whereas PGF2α significantly potentiated them. Arachidonic acid, a precursor of the prostaglandins (PGs), significantly attenuated pressor responses to norepinephrine. Since the attenuating effect of arachidonic acid was completely abolished by the pretreatment with indomethacin (5 mg/kg), arachidonic acid is thought to exert an effect through its conversion to PGs. On the contrary, intravenously injected indomethacin (0.2–5.0 mg/kg) facilitated pressor responses to norepinephrine in a dose-related manner without any direct effect on the basal blood pressure. These results suggest that endogenous PGs may participate in the regulation of blood pressure by modulating pressor responses to norepinephrine in conscious rats.  相似文献   

17.
The antiaggregating agent prostacyclin (PGI2) was infused into ten dogs during cardiopulmonary bypass (CPB) to minimize thrombocytopenia and platelet dysfunction. The animals were anesthetized, placed on mechanical ventilation and underwent thoracotomy. After heparinization with 300 u/kg, animals were assigned to control (n=5) or PGI2 treated groups (n=5). Thoracotomy and then CPB decreased platelet numbers to below 30, 000/mm3 (p < 0.05) and fibrinogen to less than 150 mg/dl (p < 0.05). PGI2 at 100 ng/kg·min was infused for the 2 h period of CPB. PGI2 infusion did not prevent these changes, but did prevent platelet serotonin release. In the control group after CPB, platelet serotonin fell from the baseline value of 1.11 μg/109 to 0.35 μg/109 platelets (p < 0.05). In contrast, PGI2 treatment resulted in a serotonin increase to 2.27 μg/109 platelets (p < 0.05). Thromboxane B2 concentrations of platelets and plasma rose during CPB (p < 0.05). Surprisingly, PGI2 infusion accentuated this rise in platelet and plasma thromboxane B2 (p < 0.05). These data indicate that during CPB, an infusion of PGI2: 1) does not prevent thrombocytopenia; 2) increases platelet serotonin uptake despite, 3) an associated rise in platelet and plasma thromboxane B2.  相似文献   

18.
Anti-aggregating activity of 7-ethoxycarbonyl-6,8-dimethyl-4-hydroxymethyl-1(2H)-phthalazinone (EG-626) was tested using rabbit platelets in vitro. EG-626 alone, when added before, prevented platelet aggregation induced by ADP, as did PGI2, papaverine and dipyridamole. Spontaneous disaggregation was also accelerated when EG-626 was added after the maximal aggregation induced by ADP. EG-626 alone also inhibited platelet aggregation induced by collagen and arachidonic acid. ID50s of these agents in ADP-induced aggregation were 7–9 nM for PGI2, 223 μM for EG-626, 266 μM for papaverine and 957 μM for dipyridamole. When EG-626 was used in combination with PGI2, a threshold dose (50 μM) of EG-626 potentiated the anti-aggregating effect of subthreshold dose (3 nM) of PGI2 upto 100% inhibition in collagen-induced platelet aggregation. The marked potentiating effect of EG-626 was accompanied by an accumulation of cyclic AMP in the platelets. These effects might be due to inhibition of phosphodiesterase. Papaverine and dipyridamole, other phosphodiesterase inhibitors, also potentiated the anti-aggregating activity of PGI2. The activity of papaverine, however, was one eighth of EG-626 and that of dipyridamole was much less. The most effective combination of PGI2 and EG-626 to induce 50% inhibition was obtained with 20% of ID50 of each agent, whereas that of PGI2 and papaverine or dipyridamole was 39 or 41%, respectively.  相似文献   

19.
Intravenous injection of 600 μg PGE2 or PGI2 significantly increased serum LH and prolactin levels in estradiol treated ovariectomized rats. There was no effect on serum FSH concentration. PGE2 and PGI2 stimulated LH release in a non-dose dependent manner, while prolactin levels were positively correlated with the dose administered following PGI2 treatment. 6-keto-PGF at a comparable dose had no effect on pituitary hormone levels. Subcutaneous administration of 1 mg/kg or 60 mg/kg PGI2 for seven days significantly depressed serum LH level both in male and female rats. These doses had no effect on serum FSH or prolactin levels.  相似文献   

20.
Prostacyclin (PGI2) dose-dependently increases the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels in canine femoral, carotid, and canine and bovine coronary arteries. The prostacyclin-stimulation is enhanced by phosphodiesterase inhibitors, and is readily measurable after 60 sec incubation. The prostaglandin endoperoxide PGH2, but not PGH1, also elevates cAMP levels in femoral arteries. Inhibition of arterial prostacyclin synthetase with 28 μM 9,11-azoprosta-5,13-dienoic acid (azo analog I) blocks the PGH2-stimulation of cAMP accumulation. Azo analog I does not attenuate a direct PGI2 stimulation, indicating that the PGH2 dependent elevation of cAMP is due to conversion of PGH2 to PGI2 by the artery. PGI2 and PGE1 increase cyclic AMP levels and relax dog femoral and bovine coronary arteries, while PGE2, which actually contracts bovine coronary arteries, has no effect on arterial cyclic AMP levels. The significance of the PGI2-stimulation of arterial cyclic AMP is not known, but it is probably related to relaxation of arterial strips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号