首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A short review of confocal stereology and three-dimensional image analysis is presented, pointing out the achievements accomplished in this field by the Department of Biomathematics (Institute of Physiology, Prague). One of the methods of confocal stereology, the fakir method for surface area estimation, developed by this laboratory, is described. Methods for automatic measurement of geometrical characteristics of microscopical structures, based on 3-D image processing or surface triangulation, are discussed and compared with interactive stereological methods. Three-dimensional reconstruction programs and software implementation of stereological and digital methods as well as their practical applications are presented. The future trends are discussed.  相似文献   

2.
Recent design-based stereological methods that can be applied to thick sections cut in an arbitrary direction are presented and their implementation for measuring mesophyll anatomical characteristics is introduced. These methods use software-randomized virtual 3D probes, such as disector and fakir test probes, in stacks of optical sections acquired using confocal microscopy. They enable unbiased estimations of the mean mesophyll cell volume, mesophyll cell number in a needle, and for the first time an internal surface area of needles or other narrow leaves directly from the fresh tissue cross-sections cut using a hand microtome. Therefore, reliable results can be obtained much faster than when using a standard microtechnical preparation. The proposed methods were tested on Norway spruce needles affected for 1 year by acid rain treatment. The effect of acid rain resulted in changes of mesophyll parameters: the ratio of intercellular spaces per mesophyll cell volume increased, while needle internal surface area, total number of mesophyll cells, and number of mesophyll cells per unit volume of a needle decreased in the treated needles.  相似文献   

3.
OBJECTIVE: To evaluate the formula of Ebbeson and Tang (FET) with respect to the disector (DS) principle. STUDY DESIGN: The DS principle has been proposed for avoiding cell count bias. DS is a slice of tissue, and from it those cells by area are counted in microscopy; the cells are not in contact with one of the surfaces of the slice. The resulting number divided by the thickness of the DS gives an accurate figure for cell number by volume. FET applies two sections of different thickness, usually cut adjacent. Cells seen in the sections are counted by area, the figures are subtracted from each other, and the difference is divided by the difference between the thicknesses of the sections. The result is cell number by volume: NV = (NA1 - NA2)/(t1 - t2). RESULTS: FET and the DS principle superficially appear different. However, from a geometric point of view they are based on the same principle. When the thickness of the thinner section of FET approaches zero, the situation is in all respects equal to the DS principle. The formula for DS can thus be written: NV = (NA1 - NA2)/t1. CONCLUSION: The result proves that in principle DS and FET are equivalent methods of counting cell numbers by volume in tissues. FET may be more easily applied in histopathology practice because visual comparison of the sections is not necessary. Section thickness, however, has to be measured from vertically embedded sections or with scanning laser confocal microscopy. FET shares the stereologically unbiased character of the DS principle and is independent of the size and shape of structures counted.  相似文献   

4.
Shope JC  DeWald DB  Mott KA 《Plant physiology》2003,133(3):1314-1321
Guard cells must maintain the integrity of the plasma membrane as they undergo large, rapid changes in volume. It has been assumed that changes in volume are accompanied by changes in surface area, but mechanisms for regulating plasma membrane surface area have not been identified in intact guard cells, and the extent to which surface area of the guard cells changes with volume has never been determined. The alternative hypothesis-that surface area remains approximately constant because of changes in shape-has not been investigated. To address these questions, we determined surface area for intact guard cells of Vicia faba as they underwent changes in volume in response to changes in the external osmotic potential. We also estimated membrane internalization for these cells. Epidermal peels were subjected to external solutions of varying osmotic potential to shrink and swell the guard cells. A membrane-specific fluorescent dye was used to identify the plasma membrane, and confocal microscopy was used to acquire a series of optical paradermal sections of the guard cell pair at each osmotic potential. Solid digital objects representing the guard cells were created from the membrane outlines identified in these paradermal sections, and surface area, volume, and various linear dimensions were determined for these solid objects. Surface area decreased by as much as 40% when external osmotic potential was increased from 0 to 1.5 MPa, and surface area varied linearly with volume. Membrane internalization was approximated by determining the amount of the fluorescence in the cell's interior. This value was shown to increase approximately linearly with decreases in the cell's surface area. The changes in surface area, volume, and membrane internalization were reversible when the guard cells were returned to a buffer solution with an osmotic potential of approximately zero. The data show that intact guard cells undergo changes in surface area that are too large to be accommodated by plasma membrane stretching and shrinkage and suggest that membrane is reversibly internalized to maintain cell integrity.  相似文献   

5.
Hammel I  Lagunoff D 《Cytometry》2002,47(2):138-141
BACKGROUND: A common morphometric problem is the determination of an estimate of the size of biological particles obtained from measurements made on a sample of profiles observed in sections. Results are reported typically in terms of mean caliper diameter or mean volume of the particle. METHODS: We have investigated the use of the Cavalieri estimator for obtaining estimates of mean particle volume using a Monte Carlo simulation. Samples of spherical and ellipsoidal particles were generated by computer and serially sectioned at a fixed mean thickness with a small, imposed random variation. The area of each profile was determined and the volume of the particle was calculated according to the Cavalieri estimator. The influence on the estimate of the mean particle volume and its 95% confidence interval was evaluated for several variables: the shape of the particles, the standard deviation of the particle volume in the population, the section thickness, and the standard deviation of the section thickness. RESULTS: The results obtained with the Cavalieri estimator correspond favorably with those obtained with previously reported alternative methods. This leads to a recommendation for the strong consideration for the use of the Cavalieri estimator in cases in which it is technically feasible to obtain at least three sections through the individual particles. Graphs are provided, which relate the confidence interval for the mean volume to the number of particles measured.  相似文献   

6.
The fusion of antigen presenting and cancer cells leads to the formation of hybrid cells, which are considered a potential vaccine for treating cancer. The quality assessment of hybrid cell vaccines is crucial for the introduction of this new treatment. Flow cytometry was the method used recently, since it is faster in comparison to classical microscopy. Here we describe a rapid confocal microscopy based approach to quantify hybrid cell yields. The extent of fusion rate was determined by confocal microscopy by counting dual fluorescent cells and by measuring the area of co-localized pixels. Results of both methods showed high degree of correlation. The same samples were also analyzed by flow cytometry. Fusion rates determined with both techniques showed significant correlation. In conclusion, using confocal microscopy we developed a sensitive and a rapid method to assess the yield of hybridomas in a large number of electrofused cells.  相似文献   

7.
BACKGROUND: The recently developed technique of high-resolution cytometry (HRCM) enables automated acquisition and analysis of fluorescent in situ hybridization (FISH)-stained cell nuclei using conventional wide-field fluorescence microscopy. The method has now been extended to confocal imaging and offers the opportunity to combine the advantages of confocal and wide-field modes. METHODS: We have automated image acquisition and analysis from a standard inverted fluorescence microscope equipped with a confocal module with Nipkow disk and a cooled digital CCD camera. The system is fully controlled by a high-performance computer that performs both acquisition and related on-line image analysis. The system can be used either for an automatic two (2D) and three-dimensional (3D) analysis of FISH- stained interphase nuclei or for a semiautomatic 3D analysis of FISH-stained cells in tissues. The user can select which fluorochromes are acquired using wide-field mode and which using confocal mode. The wide-field and confocal images are overlaid automatically in computer memory. The developed software compensates automatically for both chromatic color shifts and spatial shifts caused by switching to a different imaging mode. RESULTS: Using the combined confocal and wide-field HRCM technique, it is possible to take advantage of both imaging modes. Images of some dyes (such as small hybridization dots or counterstain images of individual interphase nuclei) do not require confocal quality and can be acquired quickly in wide-field mode. On the contrary, images of other dyes (such as chromosome territories or counterstain images of cells in tissues) do require improved quality and are acquired in confocal mode. The dual-mode approach is two to three times faster compared with the single-mode confocal approach and the spectrum of its applications is much broader compared with both single-mode confocal and single-mode wide-field systems. CONCLUSIONS: The combination of high speed specific to the wide-field mode and high quality specific to the confocal mode gives optimal system performance.  相似文献   

8.
Parenchyma cells from the inner mesocarp of a grape berry (Vitis vinifera L. cv. Chardonnay) were visualised in three-dimensions within a whole mount of cleared, stained tissue using confocal laser scanning microscopy and digital image reconstruction. The whole berry was fixed, bisected longitudinally, cleared in methyl salicylate, stained with safranin O and mounted in methyl salicylate. Optical slices were collected at 1.0 μm intervals to a depth of 150 μm. Neighbouring z-series were joined post-collection to double the field-of-view. Attenuation at depth of the fluorescent signal from cell walls was quantified and corrected. Axial distortion due to refractive index mismatch between the immersion and mounting media was calibrated using yellow-green fluorescent microspheres and corrected. Transmission electron microscopy was used to correct fluorescent measurements of cell wall thickness. Digital image reconstructions of wall-enclosed spaces enabled cells to be rendered as geometric solids of measurable surface area and volume. Cell volumes within the inner mesocarp tissue of a single grape berry exhibited a 14-fold range, with polysigmoidal distribution and groupings around specific size classes. Cell shape was irregular and the planes of contact were rarely flat or simple. Variability in cell shape was indicated by the range in surface area to volume ratios, from 0.080 to 0.198 μm–1. Structural detail at the internal surface of the cell wall was apparent. The technique is applicable to a wide range of morphometric analyses in plant cell biology, particularly developmental studies, and reveals details of cell size and shape that were previously unattainable.  相似文献   

9.
Microglia activation, as well as extravasation of haematogenous macrophages and neutrophils, is believed to play a pivotal role in brain injury after stroke. These myeloid cell subpopulations can display different phenotypes and functions and need to be distinguished and characterized to study their regulation and contribution to tissue damage. This protocol provides two different methodologies for brain immune cell characterization: a precise stereological approach and a flow cytometric analysis. The stereological approach is based on the optical fractionator method, which calculates the total number of cells in an area of interest (infarcted brain) estimated by a systematic random sampling. The second characterization approach provides a simple way to isolate brain leukocyte suspensions and to characterize them by flow cytometry, allowing for the characterization of microglia, infiltrated monocytes and neutrophils of the ischemic tissue. In addition, it also details a cerebral ischemia model in mice that exclusively affects brain cortex, generating highly reproducible infarcts with a low rate of mortality, and the procedure for histological brain processing to characterize infarct volume by the Cavalieri method.  相似文献   

10.
The quantitative analysis of the contribution of ion fluxes through membrane channels to changes of intracellular ion concentrations would benefit from the exact knowledge of the cell volume. It would allow direct correlation of ionic current measurements with simultaneous measurements of ion concentrations in individual cells. Because of various limitations of conventional light microscopy a simple method for accurate cell volume determination is lacking. We have combined the optical sectioning capabilities of fluorescence laser scanning confocal microscopy and the whole-cell patch-clamp technique to study the correlation between cell volume and membrane capacitance. Single cardiac myocytes loaded with the fluorescent dye calcein were optically sectioned to produce a series of confocal images. The volume of cardiac myocytes of three different mammalian species was determined by three-dimensional volume rendering of the confocal images. The calculated cell volumes were 30.4 +/- 7.3 pl (mean +/- SD) in rabbits (n = 28), 30.9 +/- 9.0 pl in ferrets (n = 23), and 34.4 +/- 7.0 pl in rats (n = 21), respectively. There was a positive linear correlation between membrane capacitance and cell volume in each animal species. The capacitance-volume ratios were significantly different among species (4.58 +/- 0.45 pF/pl in rabbit, 5.39 +/- 0.57 pF/pl in ferret, and 8.44 +/- 1.35 pF/pl in rat). Furthermore, the capacitance-volume ratio was dependent on the developmental stage (8.88 +/- 1.14 pF/pl in 6-month-old rats versus 6.76 +/- 0.62 pF/pl in 3-month-old rats). The data suggest that the ratio of surface area:volume of cardiac myocytes undergoes significant developmental changes and differs among mammalian species. We further established that the easily measurable parameters of cell membrane capacitance or the product of cell length and width provide reliable but species-dependent estimates for the volume of individual cells.  相似文献   

11.
Calcium sparks and embers are localized intracellular events of calcium release in muscle cells studied frequently by confocal microscopy using line-scan imaging. The large quantity of images and large number of events require automatic detection procedures based on signal processing methods. In the past decades these methods were based on thresholding procedures. Although, recently, wavelet transforms were also introduced, they have not become widespread. We have implemented a set of algorithms based on one- and two-dimensional versions of the à trous wavelet transform. The algorithms were used to perform spike filtering, denoising and detection procedures. Due to the dependence of the algorithms on user adjustable parameters, their effect on the efficiency of the algorithm was studied in detail. We give methods to avoid false positive detections which are the consequence of the background noise in confocal images. In order to establish the efficiency and reliability of the algorithms, various tests were performed on artificial and experimental images. Spark parameters (amplitude, full width-at-half maximum) calculated using the traditional and the wavelet methods were compared. We found that the latter method is capable of identifying more events with better accuracy on experimental images. Furthermore, we extended the wavelet-based transform from calcium sparks to long-lasting small-amplitude events as calcium embers. The method not only solved their automatic detection but enabled the identification of events with small amplitude that otherwise escaped the eye, rendering the determination of their characteristic parameters more accurate.  相似文献   

12.
Guard cells rapidly adjust their plasma membrane surface area while responding to osmotically induced volume changes. Previous studies have shown that this process is associated with membrane internalization and remobilization. To investigate how guard cells maintain membrane integrity during rapid volume changes, the effects of two membrane trafficking inhibitors on the response of intact guard cells of Vicia faba to osmotic treatments were studied. Using confocal microscopy and epidermal peels, the relationship between the area of a medial paradermal guard-cell section and guard-cell volume was determined. This allowed estimates of guard-cell volume to be made from single paradermal confocal images, and therefore allowed rapid determination of volume as cells responded to osmotic treatments. Volume changes in control cells showed exponential kinetics, and it was possible to calculate an apparent value for guard-cell hydraulic conductivity from these kinetics. Wortmannin and cytochalasin D inhibited the rate of volume loss following a 0-1.5 MPa osmotic treatment. Cytochalasin D also inhibited volume increases following a change from 1.5 MPa to 0 MPa, but wortmannin had no effect. Previous studies showing that treatment with arabinanase inhibits changes in guard-cell volume in response to osmotic treatments were confirmed. However, pressure volume curves show that the effects of arabinanase and the cytochalasin D were not due to changes in cell wall elasticity. It is suggested that arabinanase, cytochalasin D, and wortmannin cause reductions in the hydraulic conductivity of the plasma membrane, possibly via gating of aquaporins. A possible role for aquaporins in co-ordinating volume changes with membrane trafficking is discussed.  相似文献   

13.
During its 48 h asexual reproduction cycle, the malaria parasite Plasmodium falciparum ingests and digests hemoglobin in excess of its metabolic requirements and causes major changes in the homeostasis of the host red blood cell (RBC). A numerical model suggested that this puzzling excess consumption of hemoglobin is necessary for the parasite to reduce the colloidosmotic pressure within the host RBC, thus preventing lysis before completion of its reproduction cycle. However, the validity of the colloidosmotic hypothesis appeared to be compromised by initial conflicts between model volume predictions and experimental observations. Here, we investigated volume and membrane area changes in infected RBCs (IRBCs) using fluorescence confocal microscopy on calcein-loaded RBCs. Substantial effort was devoted to developing and testing a new threshold-independent algorithm for the precise estimation of cell volumes and surface areas to overcome the shortfalls of traditional methods. We confirm that the volume of IRBCs remains almost constant during parasite maturation, suggesting that the reported increase in IRBCs' osmotic fragility results from a reduction in surface area and increased lytic propensity on volume expansion. These results support the general validity of the colloidosmotic hypothesis, settle the IRBC volume debate, and help to constrain the range of parameter values in the numerical model.  相似文献   

14.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists.This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2–5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method.Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

15.
Traditional methods of visualization and analysis based on fixed cell populations treated with the drug for a different time give the limited possibility of time-sequence analysis. In time-lapse microscopy where the whole cell is observed regardless to intracellular structure, precise localization of events and differentiation between colocalization and overlapping of the fluorescence is impossible. Furthermore prolonged experiments with living cells increased the influence of improper environmental conditions. Homeostatic confocal microscopy gives an exceptional insight into minute pattern of changes occurring in the same living cell maintained in stable conditions during whole experimental period. It is built on a confocal system equipped with the homeostatic chamber providing constant, monitored heating and moisturized, CO2-enriched atmosphere during long period observations. In the present study 2D/time and 4D homeostatic confocal microscopy were applied for analysis of minute pattern of changes occurring at the mitochondria. The release of Smac/DIABLO from mitochondria in tumor cells under the apoptogenic stimulus, consist of two phases: the first immediately after drug administration, and the major second one after 15 min. Furthermore the time-pattern of BAX translocation to the mitochondria and Smac/DIABLO release coincide, suggesting that the release of Smac/DIABLO is correlated with BAX translocation to the mitochondria.  相似文献   

16.
OBJECTIVE: To develop a method for the acquisition and processing of 3-dimensional images based on confocal laser scanning microscopy for the purpose of 3-dimensional visualization and quantitative analysis of cell nuclei. STUDY DESIGN: A contour-based surface rendering method was used, and volume rendering was implemented according to the basic volume rendering pipeline. To extract quantitative features, a 3-dimensional labeling method based on slice information was used. After applying the labeling algorithm, the measurements for 3-dimensional quantitative analysis of nuclei were extracted: nuclear volume, surface area and spherical shape factor. We compared the 3-dimensional features of normal and abnormal cervical cell nuclei. RESULTS: Comparison of the size of 3-dimensional cervical cell nuclei between normal and abnormal revealed a statistically significant difference. The proposed method could overcome the limitation inherent in 2-dimensional analysis and could become a way of improving the accuracy and reproducibility of quantification of cell nuclei. CONCLUSION: Three-dimensional visualization and quantification of cell nuclei provide valuable medical information that can lead to a more objective diagnosis.  相似文献   

17.
Confocal microscopy is providing new and exciting opportunities for imaging cell structure and physiology in thick biological specimens, in three dimensions, and in time. The utility of confocal microscopy relies on its fundamental capacity to reject out-of-focus light, thus providing sharp, high-contrast images of cells and subcellular structures within thick samples. Computer controlled focusing and image-capturing features allow for the collection of through-focus series of optical sections that may be used to reconstruct a volume of tissue, yielding information on the 3-D structure and relationships of cells. Tissues and cells may also be imaged in two or three spatial dimensions over time. The resultant digital data, which encode the image, are highly amenable to processing, manipulation and quantitative analyses. In conjunction with a growing variety of vital fluorescent probes, confocal microscopy is yielding new information about the spatiotemporal dynamics of cell morphology and physiology in living tissues and organisms. Here we use mammalian brain tissue to illustrate some of the ways in which multidimensional confocal fluorescence imaging can enhance studies of biological structure and function.  相似文献   

18.
Cell Surface Area Regulation and Membrane Tension   总被引:17,自引:0,他引:17  
The beautifully orchestrated regulation of cell shape and volume are central themes in cell biology and physiology. Though it is less well recognized, cell surface area regulation also constitutes a distinct task for cells. Maintaining an appropriate surface area is no automatic side effect of volume regulation or shape change. The issue of surface area regulation (SAR) would be moot if all cells resembled mammalian erythrocytes in being constrained to change shape and volume using existing surface membrane. But these enucleate cells are anomalies, possessing no endomembrane. Most cells use endomembrane to continually rework their plasma membrane, even while maintaining a given size or shape. This membrane traffic is intensively studied, generally with the emphasis on targeting and turnover of proteins and delivery of vesicle contents. But surface area (SA) homeostasis, including the controlled increase or decrease of SA, is another of the outcomes of trafficking. Our principal aims, then, are to highlight SAR as a discrete cellular task and to survey evidence for the idea that membrane tension is central to the task. Cells cannot directly ``measure' their volume or SA, yet must regulate both. We posit that a homeostatic relationship exists between plasma membrane tension and plasma membrane area, which implies that cells detect and respond to deviations around a membrane tension set point. Maintenance of membrane strength during membrane turnover, a seldom-addressed aspect of SA dynamics, we examine in the context of SAR. SAR occurs in both animal and plant cells. The review shows the latter to be a continuing source of groundbreaking work on tension-sensitive SAR, but is principally slanted to animal cells. Received: 1 May 2000/Revised: 14 August 2000  相似文献   

19.
We examined the histological structure of the tongue of Laudakia stellio, the starred agama lizard (Agamidae, Squamata), under light microscopy. We also investigated the muscle and papilla volume ratios, with volumes of each aspect of interest estimated according to the Cavalieri method. The macroscopically short, thick and muscle-rich front tip of the tongue of L. stellio does not show any bifurcation, and under light microscopy, the oval-shaped papilla-free front tip was seen to be covered by keratinized stratified epithelium. The dorsal and ventral parts were different, with the former partially covered by keratinized stratified epithelium and rich in secretory glands and secretory cells. The ventral part, which contained keratinized stratified cells, had a flat surface with no papillae. The dorsal surface of the anterior and posterior parts contained fungiform papillae, with the apical parts of these papillae containing minimal keratin; the interpapillar space was covered by keratin-free squamous stratified epithelium. The middle section of the tongue contained cylindrical-type papillae, with serous and mucous secretory glands and ducts at their base. Finally, the frontal and middle parts of the ventral and dorsal surfaces did not contain any taste buds, although there were some in the hind part of the dorsal surface. As morphometric estimates of volumes of the muscles and papillae, the mean volume ratios (relative to total tongue volume)+/-standard deviation were 0.66+/-0.03 and 0.33+/-0.03, with mean coefficients of error of 0.02 and 0.03, respectively.  相似文献   

20.
The ability of two synthetic peptides GEGEEGEE and DFGEEAEE to inhibit the invasiveness of tumor cells has been studied. Using confocal microscopy, it was demonstrated that these peptides specifically bind to receptor for hyaluronic acid mediated motility (RHAMM) on the prostate cancer cell surface. Effect of peptides on invadopodia formation in cancer cells was studied by fluorescent gelatin degradation. Using confocal microscopy, images of the cells were obtained and the degree of their invasiveness was analyzed by assessing the gelatin degradation area using ImageJ software. It was found that pre-incubation of tumor cells with the peptides at a concentration of 40 μg/mL (2 × 10–7 M) inhibited the invasiveness by more than 80%. Thus, it was shown that peptides GEGEEGEE and DFGEEAEE may be potential antitumor agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号