首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balestra FR  Jimenez J 《Genetics》2008,180(4):2073-2080
Microtubules assume a variety of structures throughout the different stages of the cell cycle. Ensuring the correct assembly of such structures is essential to guarantee cell division. During mitosis, it is well established that the spindle assembly checkpoint monitors the correct attachment of sister chromatids to the mitotic spindle. However, the role that microtubule cytoskeleton integrity plays for cell-cycle progression during interphase is uncertain. Here we describe the existence of a mechanism, independent of the mitotic checkpoint, that delays entry into mitosis in response to G(2)-phase microtubule damage. Disassembly of the G(2)-phase microtubule array leads to the stabilization of the universal mitotic inhibitor Wee1, thus actively delaying entry into mitosis via inhibitory Cdc2 Tyr15 phosphorylation.  相似文献   

2.
BACKGROUND: DNA damage during mitosis triggers an ATM kinase-mediated cell cycle checkpoint pathway in yeast and fly embryos that delays progression through division. Recent data suggest that this is also true for mammals. Here we used laser microsurgery and inhibitors of topoisomerase IIalpha to break DNA in various mammalian cells after they became committed to mitosis. We then followed the fate of these cells and emphasized the timing of mitotic progression, spindle structure, and chromosome behavior. RESULTS: We find that DNA breaks generated during late prophase do not impede entry into prometaphase. If the damage is minor, cells complete mitosis on time. However, more significant damage substantially delays exit from mitosis in many cell types. In human (HeLa, CFPAC-1, and hTERT-RPE) cells, this delay occurs during metaphase, after the formation of a bipolar spindle and the destruction of cyclin A, and it is not dependent on a functional p53 pathway. Pretreating cells with ATM kinase inhibitors does not abrogate the metaphase delay due to chromosome damage. Immunofluorescence studies reveal that cells blocked in metaphase by chromosome damage contain one or more Mad2-positive kinetochores, and the block is rapidly overridden when the cells are microinjected with a dominant-negative construct of Mad2 (Mad2deltaC). CONCLUSIONS: We conclude that the delay in mitosis induced by DNA damage is not due to an ATM-mediated DNA damage checkpoint pathway. Rather, the damage leads to defects in kinetochore attachment and function that, in turn, maintain the intrinsic Mad-2-based spindle assembly checkpoint.  相似文献   

3.
4.
Rho GTPases regulate multiple signal transduction pathways that influence many aspects of cell behaviour, including migration, morphology, polarity and cell cycle. Through their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho and Cdc42 make several key contributions during the mitotic phase of the cell cycle, including spindle assembly, spindle positioning, cleavage furrow contraction and abscission. We now report that PRK2/PKN2, a Ser/Thr kinase and Rho/Rac effector protein, is an essential regulator of both entry into mitosis and exit from cytokinesis in HeLa S3 cells. PRK2 is required for abscission of the midbody at the end of the cell division cycle and for phosphorylation and activation of Cdc25B, the phosphatase required for activation of mitotic cyclin/Cdk1 complexes at the G2/M transition. This reveals an additional step in the mammalian cell cycle controlled by Rho GTPases.  相似文献   

5.
Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.  相似文献   

6.
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.  相似文献   

7.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

8.
It is well established that B-Raf signaling through the MAP kinase (ERK) pathways plays a prominent role in regulating cell proliferation but how it does this is not completely understood. Here, we show that B-Raf serves a physiological role during mitosis in human somatic cells. Knockdown of B-Raf using short interfering RNA (siRNA) resulted in pleiotropic spindle abnormalities and misaligned chromosomes in over 80% of the mitotic cells analyzed. A second B-Raf siRNA gave similar results suggesting these effects are specific to down-regulating B-Raf protein. In agreement with these findings, a portion of B-Raf was detected at the spindle structures including the spindle poles and kinetochores. Knockdown of C-Raf (Raf-1) had no detectable effects on spindle formation or chromosome alignment. Activation of the spindle assembly checkpoint was found to be dependent on B-Raf as evident by the inability of checkpoint proteins Bub1 and Mad2 to localize to unattached kinetochores in HeLa cells treated with B-Raf siRNA. Consistent with this, live-cell imaging microscopy showed that B-Raf-depleted cells exited mitosis earlier than control non-depleted cells. Finally, we provide evidence that B-Raf signaling promotes phosphorylation and kinetochore localization of the mitotic checkpoint kinase Mps1. Blocking B-Raf expression, ERK activity, or phosphorylation at Ser-821 residue perturbed Mps1 localization at unattached kinetochores. Thus, our data implicates a mitotic role for B-Raf in regulating spindle formation and the spindle checkpoint in human somatic cells.  相似文献   

9.
Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.  相似文献   

10.
In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.  相似文献   

11.
Here we discuss a “chromosome separation checkpoint” that might regulate the anaphase‐telophase transition. The concept of cell cycle checkpoints was originally proposed to account for extrinsic control mechanisms that ensure the order of cell cycle events. Several checkpoints have been shown to regulate major cell cycle transitions, namely at G1‐S and G2‐M. At the onset of mitosis, the prophase‐prometaphase transition is controlled by several potential checkpoints, including the antephase checkpoint, while the spindle assembly checkpoint guards the metaphase‐anaphase transition. Our hypothesis is based on the recently uncovered feedback control mechanism that delays chromosome decondensation and nuclear envelope reassembly until effective separation of sister chromatids during anaphase is achieved. A central player in this potential checkpoint is the establishment of a constitutive, midzone‐based Aurora B phosphorylation gradient that monitors the position of chromosomes along the spindle axis. We propose that this surveillance mechanism represents an additional step towards ensuring mitotic fidelity.  相似文献   

12.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

13.
The mitogen-activated protein (MAP) kinase pathway, which includes extracellular signal–regulated protein kinases 1 and 2 (ERK1, ERK2) and MAP kinase kinases 1 and 2 (MKK1, MKK2), is well-known to be required for cell cycle progression from G1 to S phase, but its role in somatic cell mitosis has not been clearly established. We have examined the regulation of ERK and MKK in mammalian cells during mitosis using antibodies selective for active phosphorylated forms of these enzymes. In NIH 3T3 cells, both ERK and MKK are activated within the nucleus during early prophase; they localize to spindle poles between prophase and anaphase, and to the midbody during cytokinesis. During metaphase, active ERK is localized in the chromosome periphery, in contrast to active MKK, which shows clear chromosome exclusion. Prophase activation and spindle pole localization of active ERK and MKK are also observed in PtK1 cells. Discrete localization of active ERK at kinetochores is apparent by early prophase and during prometaphase with decreased staining on chromosomes aligned at the metaphase plate. The kinetochores of chromosomes displaced from the metaphase plate, or in microtubule-disrupted cells, still react strongly with the active ERK antibody. This pattern resembles that reported for the 3F3/2 monoclonal antibody, which recognizes a phosphoepitope that disappears with kinetochore attachment to the spindles, and has been implicated in the mitotic checkpoint for anaphase onset (Gorbsky and Ricketts, 1993. J. Cell Biol. 122:1311–1321). The 3F3/2 reactivity of kinetochores on isolated chromosomes decreases after dephosphorylation with protein phosphatase, and then increases after subsequent phosphorylation by purified active ERK or active MKK. These results suggest that the MAP kinase pathway has multiple functions during mitosis, helping to promote mitotic entry as well as targeting proteins that mediate mitotic progression in response to kinetochore attachment.  相似文献   

14.
When human cells are stressed during G2, they are delayed from entering mitosis via a checkpoint mediated by the p38 kinase, and this delay can be modeled by the selective activation of p38 with anisomycin. Here, we report, on the basis of live-cell studies, that 75 nM anisomycin transiently (1 hr) activates p38 which, in turn, rapidly and completely blocks entry into mitosis for at least 4 hr in all primary, telomerase- or spontaneously immortalized (p53+ and pRB+) human cells. However, the same treatment does not delay entry into mitosis in cancer cells, or the delay in entering mitosis is shortened, even though it induces a similar transient and comparable (or stronger) activation of p38. Because the primary substrate of p38, the MK2 kinase, is also transiently (1-2 hr) activated by anisomycin in both normal and cancer cells, checkpoint disruption in transformed cells occurs downstream of MK2. Finally, observations on isogenic lines reveal that the duration of the stress checkpoint is shortened in cells lacking both p53 and pRb and that the constitutive expression of an active H-Ras oncogene in these cells further attenuates the checkpoint via an ERK1/2-dependent manner. Thus, transformation leads to attenuation of the p38-mediated stress checkpoint. This outcome is likely selected for during transformation because it confers the ability to outgrow normal cells under stressful in vitro (culture) or in vivo (tumor) environments. Our data caution against using cancer cells to study how p38 produces a G2 arrest.  相似文献   

15.
Chk1 is a conserved protein kinase originally identified in fission yeast, required to delay entry of cells with damaged or unreplicated DNA into mitosis. The requirement of Chk1 for both S and G2/M checkpoints has been elucidated while only few studies have connected Chk1 to the mitotic spindle checkpoint. We used a small interference RNA strategy to investigate the role of Chk1 in unstressed conditions. Chk1 depletion in U2OS human osteosarcoma cells inhibited cell proliferation and raised the percentage of cells with a 4N DNA content, which correlated with accumulation of giant polynucleated cells morphologically distinct from apoptotic cells, while no increased number of cells in G2 or mitosis could be detected. Down-regulation of Chk1 also caused accumulation of cells in the last step of cytokinesis, and of tetraploid cells in G1 phase, which coincided with activation of p53 and increased levels of p21. In addition, Chk1-depleted U2OS cells failed to arrest in mitosis after spindle disruption by nocodazole and showed decreased protein levels of Mad2 and BubR1. These studies show that U2OS cells lacking Chk1 undergo abnormal mitosis and fail to activate the spindle checkpoint, suggesting a role of Chk1 in this checkpoint.  相似文献   

16.
Raf Kinase Inhibitory Protein (RKIP) is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.  相似文献   

17.
The spindle assembly checkpoint is essential to maintain genomic stability during cell division. We analyzed the role of the putative Drosophila Mad2 homologue in the spindle assembly checkpoint and mitotic progression. Depletion of Mad2 by RNAi from S2 cells shows that it is essential to prevent mitotic exit after spindle damage, demonstrating its conserved role. Mad2-depleted cells also show accelerated transit through prometaphase and premature sister chromatid separation, fail to form metaphases, and exit mitosis soon after nuclear envelope breakdown with extensive chromatin bridges that result in severe aneuploidy. Interestingly, preventing Mad2-depleted cells from exiting mitosis by a checkpoint-independent arrest allows congression of normally condensed chromosomes. More importantly, a transient mitotic arrest is sufficient for Mad2-depleted cells to exit mitosis with normal patterns of chromosome segregation, suggesting that all the associated phenotypes result from a highly accelerated exit from mitosis. Surprisingly, if Mad2-depleted cells are blocked transiently in mitosis and then released into a media containing a microtubule poison, they arrest with high levels of kinetochore-associated BubR1, properly localized cohesin complex and fail to exit mitosis revealing normal spindle assembly checkpoint activity. This behavior is specific for Mad2 because BubR1-depleted cells fail to arrest in mitosis under these experimental conditions. Taken together our results strongly suggest that Mad2 is exclusively required to delay progression through early stages of prometaphase so that cells have time to fully engage the spindle assembly checkpoint, allowing a controlled metaphase-anaphase transition and normal patterns of chromosome segregation.  相似文献   

18.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

19.
The spindle assembly checkpoint arrests cells in mitosis when defects in mitotic spindle assembly or partitioning of the replicated genome are detected. This checkpoint blocks exit from mitosis until the defect is rectified or the cell initiates apoptosis. In this study we have used caffeine to identify components of the mechanism that signals apoptosis in mitotic checkpoint-arrested cells. Addition of caffeine to spindle checkpoint-arrested cells induced >40% apoptosis within 5 h. It also caused proteasome-mediated destruction of cyclin B1, a corresponding reduction in cyclin B1/cdk1 activity, and reduction in MPM-2 reactivity. However, cells retained MAD2 staining at the kinetochores, an indication of continued spindle checkpoint function. Blocking proteasome activity did not block apoptosis, but continued spindle checkpoint function was essential for apoptosis. After systematically eliminating all known targets, we have identified p21-activated kinase PAK1, which has an anti-apoptotic function in spindle checkpoint-arrested cells, as a target for caffeine inhibition. Knockdown of PAK1 also increased apoptosis in spindle checkpoint-arrested cells. This study demonstrates that the spindle checkpoint not only regulates mitotic exit but apoptosis in mitosis through the activity of PAK1.  相似文献   

20.
The Cdc25A phosphatase is an essential activator of CDK-cyclin complexes at all steps of the eukaryotic cell cycle. The activity of Cdc25A is itself regulated in part by positive and negative feedback regulatory loops performed by its CDK-cyclin substrates that occur in G1 as well as during the G1/S and G2/M transitions. However, the regulation of Cdc25A during G2 phase progression before mitotic entry has not been intensively characterized. Here, we identify by mass spectrometry analysis a new phosphorylation event of Cdc25A on Serine283. Phospho-specific antibodies revealed that the phosphorylation of this residue appears in late S/G2 phase of an unperturbed cell cycle and is performed by CDK-cyclin complexes. Overexpression studies of wild-type and non-phosphorylatable mutant forms of Cdc25A indicated that Ser283 phosphorylation increases the G2/M-promoting activity of the phosphatase without impacting its stability or subcellular localization. Our results therefore identify a new positive regulatory loop between Cdc25A and its CDK-cyclin substrates which contributes to accelerate entry into mitosis through the regulation of Cdc25A activity in G2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号