首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cultured endothelial cells from human umbilical vein were incubated for 20 h at 37 degrees C in the presence of [U-14C]arachidonic acid. Around 60-70% of the radioactive fatty acid was incorporated into cell lipids and was predominantly found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerol (39%, 33%, 13% and 6.5% of total incorporated radioactivity, respectively). Stimulation of the cells with human thrombin (2 U/ml) or calcium ionophore A23187 (5 microM) promoted the release into supernatants of arachidonic acid, 6-ketoprostaglandin F1 alpha, prostaglandins E2 and F2 alpha, in decreasing order of importance. The amount of secreted material was 4-fold higher with A23187, compared to thrombin. Parallel to the liberation process, phosphatidylcholine underwent a rapid decrease of radioactivity with both agonists, suggesting the involvement of a Ca2+-dependent phospholipase A2. Phosphatidylethanolamine displayed a minor decrease with A23187, whereas some reacylation was observed at 10 min with thrombin. Phosphatidylinositol was non-significantly affected in thrombin-stimulated cells, whereas A23187 promoted an early but minor decrease, followed by resynthesis. In contrast to A23187, thrombin was also able to promote a significant hydrolysis of triacylglycerol, which might thus be implicated in the process of arachidonate liberation. Finally, radioactive phosphatidic acid and diacylglycerol appeared in endothelial cells, in response to the two agonists. However, diacylglycerol formation did not parallel that of phosphatidic acid, especially with A23187. Determination of the 14C/3H ratio of the different lipids upon cell labelling with both [14C]arachidonic acid and [3H]palmitic acid revealed that diacylglycerol and phosphatidic acid are hardly derived from inositol-phospholipid breakdown by phospholipase C. Other possible pathways involving for instance phospholipase C splitting of phosphatidylcholine are discussed.  相似文献   

2.
Muscarinic agonists stimulated arachidonic acid release from 10- to 32-fold in Chinese hamster ovary (CHO) cells transfected with muscarinic M1, M3 and M5 receptor subtypes. Muscarinic agonists liberated arachidonic acid from the cAMP-coupled M2 and M4 cells only in the presence of ATP. Partial agonists were less efficacious at liberating arachidonic acid than full agonists. The ability of muscarinic agonists to liberate arachidonic acid and stimulate phosphoinositide hydrolysis in the same CHO M1, M3 and M5 cells was well correlated; however, partial agonists were more efficacious at stimulating phosphoinositide hydrolysis than arachidonic acid release. The efficacy and potency of 13 muscarinic agonists to liberate arachidonic acid was characterised. Influx of external calcium was required for arachidonic acid release even after initiation of agonist-induced release. It is concluded that arachidonic acid release is a simple assay suitable for evaluation of muscarinic agonists, antagonists and the flux of external calcium into cells.  相似文献   

3.
Human platelets exposed to the Ca2+ ionophore A23187 form cyclo-oxygenase metabolites from liberated arachidonic acid and secrete dense granule substituents such as ADP. I have shown previously that A23187 causes activation of phospholipase A2 and some stimulation of phospholipase C. I now report that, in contrast to the case for thrombin, the activation of phospholipase C in response to ionophore is completely dependent upon the formation of cyclo-oxygenase products and the presence of ADP. The addition of A23187 to human platelets induces a transient drop in the amount of phosphatidylinositol 4,5-bisphosphate, a decrease in the amount of phosphatidylinositol, and the formation of diacylglycerol and phosphatidic acid. In addition, lysophosphatidylinositol and free arachidonic acid are produced. The presence of cyclo-oxygenase inhibitors or agents which remove ADP partially impairs these changes. When both types of inhibitor are present, the changes in phosphatidylinositol 4,5-bisphosphate and the formation of diacylglycerol and phosphatidic acid are blocked entirely, whereas formation of lysophosphatidylinositol and free arachidonic acid are relatively unaffected. The prostaglandin H2 analogue U46619 activates phospholipase C. This stimulation is inhibited partially by competitors for ADP. I conclude that phospholipase C is not activated by Ca2+ in the platelet, and suggest that stimulation is totally dependent upon a receptor coupled event.  相似文献   

4.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

5.
Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction.  相似文献   

6.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

7.
Thyrotropin-releasing hormone (TRH) stimulates hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) by a phospholipase C (or phosphodiesterase) and elevates cytoplasmic-free Ca2+ concentration ([Ca2+]i) in GH3 pituitary cells. To explore whether hydrolysis of PtdIns-4,5-P2 is secondary to the elevation of [Ca2+]i, we studied the effects of Ca2+ ionophores, A23187 and ionomycin. In cells prelabeled with [3H]myoinositol, A23187 caused a rapid decrease in the levels of [3H]PtdIns-4,5-P2, [3H]PtdIns-4-P, and [3H]PtdIns to 88 +/- 2%, 88 +/- 4%, and 86 +/- 1% of control, respectively, and increased [3H]inositol bisphosphate to 200 +/- 20% at 0.5 min. There was no increase in [3H] Ins-P3; the lack of a measurable increase in [3H]Ins-P3 was not due to its rapid dephosphorylation. In cells prelabeled with [14C]stearic acid, A23187 increased [14C]diacylglycerol and [14C]phosphatidic acid to 166 +/- 20% and 174 +/- 17% of control, respectively. In cells prelabeled with [3H]arachidonic acid, A23187, but not TRH, increased unesterified [3H]arachidonic acid to 166 +/- 8% of control. Similar effects were observed with ionomycin. Hence, Ca2+ ionophores stimulate phosphodiesteratic hydrolysis of PtdIns-4-P but not of PtdIns-4,5-P2 and elevate the level of unesterified arachidonic acid in GH3 cells. These data demonstrate that Ca2+ ionophores affect phosphoinositide metabolism differently than TRH and suggest that TRH stimulation of PtdIns-4,5-P2 hydrolysis is not secondary to the elevation of [Ca2+]i.  相似文献   

8.
Concentrations (1 to 20 microM) of 1-oleoyl-lysophosphatidic acid which alone do not affect platelet metabolism of arachidonic acid, do augment the effects of suboptimal concentrations of thrombin on the formation of [14C]phosphatidic acid and the production of [14C]arachidonate metabolites from platelets prelabeled with [14C]arachidonate. The effect on [14C]phosphatidate occurs with concentrations of thrombin (0.1 unit/ml) which are lower than those (0.2 unit/ml) needed to observe the effects on [14C]arachidonate metabolites. The effect of 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) on the formation of phosphatidic acid temporally precedes the production of arachidonate metabolites consistent with a sequential activation of phosphatidylinositol-specific phospholipase C and phospholipase A2 activities. Preincubation of platelets with (32P)orthophosphate shows that the phosphatidic acid formed by 1-oleoyl-lysophosphatidic acid (10 microM) plus thrombin (0.2 unit/ml) is derived from phosphatidylinositol. The Ca2+-ionophoretic properties of lysophosphatidic acid might explain the accumulation of phosphatidic acid since Ca2+ prevents the conversion of phosphatidic acid to phosphatidylinositol. That effect of lysophosphatidic acid is inhibited by prostacyclin, possibly through a cyclic-AMP-mediated effect on calcium homeostasis.  相似文献   

9.
The purpose of the present study was to explore the interaction of phosphatidylinositol breakdown and the turnover of arachidonic acid in isolated rat pancreatic acini by using receptor agonists and the calcium ionophore ionomycin. Acini prelabelled with myo-[3H]inositol in vivo responded to carbachol with a rapid breakdown of phosphatidylinositol. In the presence of [32P]Pi, carbachol increased labelling of phosphatidic acid and phosphatidylinositol within 1 and 5 min respectively. Carbachol also rapidly stimulated the incorporation of [14C]arachidonic acid into phosphatidylinositol within 2 min, and the peptidergic secretagogue caerulein caused the loss of radioactivity from phospholipids prelabelled with arachidonic acid. Ca2+ deprivation partially impaired the stimulatory action of carbachol on arachidonic acid turnover. In contrast with its stimulatory effects on [32P]Pi and [14C]arachidonate incorporation, carbachol inhibited the incorporation of the saturated fatty acid stearic acid into phosphatidylinositol. Whereas ionomycin stimulation of phosphatidylinositol breakdown and [32P]Pi labelling of phospholipids was slower in onset and less effective than carbachol stimulation, the ionophore effectively promoted (arachidonyl) phosphatidylinositol turnover within 2 min. These results implicate two separate pathways for stimulated phosphatidylinositol degradation in the exocrine pancreas, involving phospholipases A2 and C. Whereas mobilization of cellular Ca2+ appears sufficient to cause activation of phospholipase A2 and amylase secretion, additional events triggered by receptor activation may be required to act in concert with Ca2+ to optimally stimulate phospholipase C. The nature of the interaction between phospholipases A2 and C and their specific physiological roles in pancreatic secretion remain to be elucidated.  相似文献   

10.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

11.
Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [14C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10(-6)M AVP [14C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10(-11)-10(-6)M). No change in labelling of other phospholipids and diacylglycerol could be detected. The V1 antagonist dPTyr(Me)AVP inhibited in a dose-dependent manner the AVP-stimulated accumulation of PA. The V2 agonist dPVDAVP was without effect. The present results suggest that AVP binds to V1 receptors in rat Leydig cells resulting in stimulation of PA turnover. We suggest that the AVP-stimulated PA formation is an indication of phosphoinositide turnover.  相似文献   

12.
Primary cultures of endometrial glands and stromal cells were labelled with [14C]-arachidonic acid for 4 h before exposure to either the calcium ionophore, A23187 (which activates phospholipase A2 (PLA2) by increasing intracellular calcium concentrations) or sodium fluoride (which activates a G-protein). Calcium ionophore (0.5-50 mumol/l) stimulated a dose- and time-dependent release of arachidonic acid from endometrial glands. Incubation with ionophore (10 mumol/l) for 1 h released 22% of the incorporated arachidonic acid. There was a corresponding decrease in phospholipids and no loss from triglycerides. Stromal cells were unresponsive to ionophore. Fluoride (10 mmol/l) stimulated a release of arachidonic acid from stromal cells and endometrial glands (6.5% of the total arachidonic acid incorporated). In stromal cells, arachidonic acid was released from triglycerides in Day-1 cultures and from phospholipids in Day-2 cultures. In both Day-1 and Day-2 cultures of endometrial glands, arachidonic acid was released from phospholipids, but not from triglycerides. Among the phospholipids, phosphatidylcholine was always the major source of arachidonic acid. Arachidonic acid release from endometrial glands and stromal cells may be mediated by activation of PLA2 (or phospholipase C) via a G-protein, but in glands calcium ionophore may have a direct effect on PLA2. The response to calcium ionophore may reflect the differences in calcium requirements of the two endometrial PLA2 isoenzymes.  相似文献   

13.
The human T lymphoblastoid cell line designated CCRF-CEM responds to phytohemagglutinin with a 3.7-fold enhancement of the 32PO4 incorporation into phosphatidylinositol. In myo-[2-3H]inositol-prelabeled CCRF-CEM cells, phytohemagglutinin induced a 3.3-fold accumulation of myo-[2-3H]inositol phosphate during 15 min incubation at 37 degrees C in the presence of 5 mM LiCl. Since Li+ is a potent inhibitor of myo-inositol-1-phosphatase, the results indicate that phytohemagglutinin induces the hydrolysis of inositol lipids in CCRF-CEM cells. In 32PO4-prelabeled CCRF-CEM cells, phytohemagglutinin induced a breakdown of 28% of [32P]phosphatidylinositol 4,5-bisphosphate 40-60 s after the stimulation. The decrease of [32P]phosphatidylinositol 4,5-bisphosphate was found as early as 10 s after the stimulation. This decrease was followed by an increased 32P-labeling of phosphatidic acid. In [2-3H]glycerol-prelabeled CCRF-CEM cells, phytohemagglutinin induced a transient accumulation of [3H]phosphatidic acid and [3H]diacylglycerol. The amount of [3H]phosphatidic acid in the stimulated cells was 3.7-times the control value at 2 min after the stimulation, whereas the amount of [3H]diacylglycerol in the stimulated cells was 1.5-times the control value at 5 min after the stimulation. In [3H8]arachidonate-prelabeled CCRF-CEM cells, phytohemagglutinin induced a transient accumulation of [3H]phosphatidic acid; the amount was 2.5-times the control value at 2 min after the stimulation. Quinacrine (1 mM) caused 41% reduction in the amount of [3H]phosphatidic acid accumulated by the stimulation in [2-3H]glycerol-prelabeled cells. Stimulation in a Ca2+-free saline containing 1 mM EGTA caused 53% reduction in the amount of [3H]phosphatidic acid accumulated by the stimulation. The results presented in this paper indicate that a human T lymphoblastoid cell line, CCRF-CEM, responds to phytohemagglutinin with a rapid turnover of inositol lipids.  相似文献   

14.
We have previously shown that hepoxilin A3 increases the intracellular concentration of Ca+2 in human neutrophils. Herein we address the initial events of hepoxilin action on the neutrophil which precede the rise in intracellular calcium. We show that hepoxilin A3 at 10-1000 nM concentrations releases from [1-14C]-arachidonic acid labeled neutrophils diacylglycerol and unesterified arachidonic acid in a time and concentration dependent fashion. The release of arachidonic acid and diacyglycerol are receptor-mediated events which are blocked by pertussis toxin. This data shows that hepoxilin A3 stimulates phospholipases C and A2 in the cell which may be involved in the rise in cytosolic calcium. Thus, hepoxilins may represent a hitherto unrecognised class of cellular mediators.  相似文献   

15.
The release of arachidonic acid and its metabolites, prostaglandin E2 and thromboxane A2, from WI-38 human lung fibroblasts was modulated by p-hydroxymercuribenzoate. Exposure to the inhibitor resulted in a dose-dependent decrease in [1-14C]arachidonic acid uptake and incorporation into phospholipids and neutral lipid pools. Activities of lung fibroblast arachidonyl-CoA synthetase and lysolecithin acyltransferase were inhibited by 100 microM p-hydroxymercuribenzoate. [14C]Arachidonic acid labelled fibroblasts exhibited an increased release of [14C]arachidonate and [14C]prostaglandin E2 of 54% and 112%, respectively, when exposed to 100 microM of inhibitor. The stimulatory effects of 8.0 microM delta 1-tetrahydrocannabinol on arachidonate release and prostaglandin E synthesis (Burstein, S., Hunter, S.A., Sedor, C. and Shulman, S. (1982) Biochem. Pharmacol. 31, 2361-2365) were modified by the inclusion of inhibiting agent, resulting in a 608% stimulation in arachidonic acid release, while prostaglandin E2 and thromboxane A2 synthesis increased 894% and 390%, respectively, over levels obtained by untreated cells. The levels of arachidonate metabolites were altered by inhibitor when compared to cells treated with cannabinoid alone. No significant inhibition by delta 1-tetrahydrocannabinol was found on arachidonic uptake in these cells. In unlabelled studies, p-hydroxymercuribenzoate resulted in a profound, dose-dependent stimulation of prostaglandin E synthesis of 1490% at 150 microM inhibitor concentration. These results provide evidence that free arachidonate is reincorporated via acylation, thereby implicating this pathway as a possible control mechanism for the synthesis of arachidonic acid metabolites.  相似文献   

16.
Purified rat mast cells were used to study the effects of anti-inflammatory steroids on the release of [1-14C]-arachidonic acid ([1-14C]AA) and metabolites. Mast cells were incubated overnight with glucocorticoids, [1-14C]AA incorporated into cellular phospholipids and the release of [1-14C]AA, and metabolites determined using a variety of secretagogues. Release of [1-14C]AA and metabolites by concanavalin A, the antigen ovalbumin and anti-immunoglobulin in E antibody was markedly reduced by glucocorticoid treatment. Neither the total incorporation of [1-14C]AA nor the distribution into phospholipids was altered by hydrocortisone pretreatment. Glucocorticoid pretreatment did not alter [1-14C]AA release stimulated by somatostatin, compound 48/80, or the calcium ionophore, A23187. These data indicate that antiinflammatory steroids selectively inhibit immunoglobulin dependent release of arachidonic acid from rat mast cells. These findings question the role of lipomodulin and macrocortin as general phospholipase inhibitors and suggest that they may be restricted to immunoglobulin stimuli.  相似文献   

17.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

18.
Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role.  相似文献   

19.
Rat basophilic leukemia (RBL-2H3) cells were cultured in medium containing [3H]arachidonic acid and labelling of the different lipid fractions was followed with time. After up to 4 h of culture, the label was found mostly in phosphatidylcholine. After 8 h, labelling of phosphatidylethanolamine gradually exceeded that of phosphatidylcholine, until at 24 h, approximate equilibrium labelling of the lipid fractions was attained and 45% of the label was found in phosphatidylethanolamine, 35% in phosphatidylcholine, 18% in the phosphatidylserine/inositide fraction and the remainder in the neutral lipid fraction. Stimulation of cells with A23187 after 30 min of labelling caused release of [3H]arachidonic acid which was accountable by a decrease in radioactivity of phosphatidylcholine, whereas stimulation of cells after 24 h of labelling caused the release of radioactive arachidonic acid, which was accompanied by a decrease of label in both phosphatidylcholine and phosphatidylethanolamine. Incubation of the labelled cells with phorbol 12-myristate 13-acetate prior to ionophore addition enhanced both the release of [3H]arachidonic acid and its metabolites and the decrease in label of the same phospholipids as those affected by ionophore alone. Under our conditions, the enhancement effects of phorbol ester were greatest after 2-5 min of preincubation, prior to ionophore addition. The results suggest that in basophilic leukemia cells, arachidonic acid release proceeds from several pools of phospholipids and that the activity of the phospholipase(s) involved is modulated by protein kinase C.  相似文献   

20.
The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of [1-14C]arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of [1-14C]arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of [1-14C]arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke [1-14C]AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with [1-14C]arachidonic acid and [3H]palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of [1-14C]arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of [1-14C]arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of [3H]LTB4 to its receptor on neutrophils. In addition, they did not stimulate aggregation or induce adhesion of neutrophils to human endothelial cells. Results indicate that both LXA4 and LXB4 stimulate the rapid remodeling of neutrophil phospholipids to release arachidonic acid without provoking either aggregation or the formation of lipoxygenase-derived products within a similar temporal and dose range. Together they indicate that LXA4 and LXB4 display selective actions with human neutrophils and suggest that these eicosanoids possess unique profiles of action which may regulate neutrophil function during inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号